Two approaches for estimating the lower limit of quantitation (LLOQ) of microRNA levels assayed as exploratory biomarkers by RT-qPCR

  • Publication Date :
  • Publication Type : Journal Article
  • Author(s) : Wolfinger RD, Beedanagari S, Boitier E, Chen T, Couttet P, Ellinger-Ziegelbauer H, Guillemain G, Mariet C, Mouritzen P, O'Lone R, Pine PS, Sharapova T, Yan J, Yuen PS, Thompson KL
  • Journal Name : BMC Biotechnology

Circulating microRNAs are undergoing exploratory use as safety biomarkers in drug development. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is one common approach used to quantitate levels of microRNAs in samples that includes the use of a standard curve of calibrators fit to a regression model. Guidelines are needed for setting assay quantitation thresholds that are appropriate for this method and to biomarker pre-validation. In this report, we develop two workflows for determining a lower limit of quantitation (LLOQ) for RT-qPCR assays of microRNAs in exploratory studies. One workflow is based on an error threshold calculated by a logistic model of the calibration curve data. The second workflow is based on a threshold set by the sample blank, which is the no template control for RT-qPCR. The two workflows are used to set lower thresholds of reportable microRNA levels for an example dataset in which miR-208a levels in biofluids are quantitated in a cardiac injury model. LLOQ thresholds set by either workflow are effective in filtering out microRNA values with large uncertainty estimates. Click here to see the article!

Download PDF Link

Contact Us

Health and Environmental Sciences Institute (HESI)

hesi@hesiglobal.org
Phone: +1-202-659-8404
Fax: +1-202-659-3859

740 15th Street NW, Suite 600
Washington, DC 20005

Stay Informed

Sign up for our monthly e-newsletter.