HESI EIC Proposal: Building Novel Methods and Science for Ototoxicity Detection and Prevention

Laura Maurer, ExxonMobil Biomedical Sciences Inc.
Purpose and Scope

Purpose:
• Improve ototoxicity characterization for risk assessment

Scope:
• Ototoxicity (which describes damage to the inner ear and/or associated nerves) is a hazard posed by exposure to select pharmaceuticals, metals, and industrial chemicals, as well as physical hazards such as audible sound (noise)
 • Occupational and consumer exposures
 • Potentially lower PoD than some other exposure-related outcomes

• Opportunities for improvement in current hazard and risk assessment across multiple disciplines
 • Epidemiology
 • Toxicology
 • Risk characterization and communication
Ototoxicity has long been recognized as a public health issue

- **Prevalence**: Hearing loss in the U.S. is the 3rd most common chronic physical condition in adults
 - Hearing difficulty in U.S. working population: 12%
 - Occupational exposures contributes to approximately 24% of hearing difficulty among U.S. workers
 - Examples of occupational exposures: noise, solvents, metals
 - Examples of non-occupational exposures: noise, antibiotics

- Novel concepts relating to a long-recognized issue:
 - **Co-exposures** to physical and chemical agents
 - **Non-occupational** exposures to noise
 - Technology advances
 - Ototoxicity is not just hearing loss
 - Involves vestibular system (controls sense of **balance**)
 - Vertigo, dizziness, nausea

1. National Institute for Occupational Safety and Health: OCCUPATIONAL HEARING LOSS (OHL) SURVEILLANCE (https://www.cdc.gov/niosh/topics/ohl/default.html) Last updated: Dec 9, 2019
2. Images acquired from Getty Images (Creative # 1163443564; # 548555543; # 1143294147; # 87397575)
Standards and regulations for mitigation of auditory impairments in the workplace

Occupational Safety and Health Administration (OSHA) Noise Standard
- Employer required to implement a hearing conservation program when noise exposure is at or above 85 decibels averaged over 8 working hours (85db = permissible exposure limit)
- Hearing conservation programs: strive to prevent initial occupational hearing loss, preserve and protect remaining hearing (PPE provision and usage, engineering controls, etc)

American Conference of Governmental Industrial Hygienists (ACGIH)
- Added “ototoxicant” notation in threshold limit values (TLVs) for chemicals
- Audible sound TLV

National Institute for Occupational Safety and Health (NIOSH) Special Bulletin (2018)
- Call for preventing hearing loss caused by chemical and noise exposure
- Data suggesting that combination of chemical and noise exposures contribute to hearing loss in the workplace
 - In general, these studies used high levels of noise and high concentrations of solvents
Mechanisms of injury – physical and chemical exposure

Solvents, Noise, Antibiotics, Metals:
Auditory Damage

Solvents, Noise, Antibiotics:
Vestibular Damage

Tinnitus
Tinnitus is the perception of noise or ringing in the ears. A common cause of tinnitus is inner ear hair cell damage.

Vertigo
Vertigo - sensation of spinning or tilting or that one’s surroundings are rotating.

Figures acquired from Getty Images (Creative # 1167605252; # 1171674983)
Opportunities for Advancement of the Science: Epidemiology

Current State

• Studies often rely on recall to assess exposures in the workplace
 • Confounding factors (noise, other co-exposures)
 • Methods for measuring hearing loss need improvement
 • Measurement of hearing loss relies on varied and nonspecific methodology

Opportunities

• Move toward battery of hearing tests to more precisely determine level and type of ototoxicity present
 • Call for improved methodology of hearing loss metrics in the form of an audiological test battery

• Work with clinical community on definitive diagnostics

Images acquired from Getty Images (Creative # 528417119; # 521713374; # 77808445)
Opportunities for Advancement of the Science: Toxicology

Current State

• Range of species, diets, exposures used to investigate ototoxicity
 • Strain differences in hearing and responses to nonauditory effects of noise
 • Not often addressed in studies¹

• Ototoxicity is almost exclusively explored in terms of hearing loss
 • Relatively less understood: loss of balance/dizziness/vertigo
 • Inner ear controls both functions

Opportunities

• Use fit-for-purpose animal models for different classes of exposures (ie: metals, antibiotics, solvents) to systematically gather dose-response information
 • Co-exposures that confound human studies

• Use animal models to investigate cellular and functional consequences of exposures to encompass both outcomes in a controlled environment
 • Occupational and non-occupational

Opportunities for Advancement of the Science: Risk Characterization and Communication

Current State

• Difficulty in systematically understanding and communicating individual risks

• Limitations on context
 • Recent use of NHANES data to correlate hearing loss and urinary metabolites of chemicals\(^1\)

Opportunities

• Compile literature in systematic review format
 • Stratify by important co-exposures

• Publish/provide the necessary perspective for use of large datasets which may be useful, but not always fit-for-purpose for ototoxicity

Images acquired from Getty Images (Creative # 1166085754; # 1056473592; # 1063202836)
Stakeholders/Potential Collaborators

- Pharmaceutical industry
- Chemical industry
 - ACC – leverage ongoing ototoxicity work on chemical-specific panels
 - Chevron (Shanna Clark, PhD)
- NIOSH
- Academia
 - University of Michigan (Rick Neitzel, PhD)
- Department of Defense
 - USAF
 - WPAFB Human Performance Wing (David Mattie, PhD and SSgt Leguin, PhD)
 - USN
 - Navy Medical Research Unit – Dayton (LCDR Cody Schaal, PhD CIH CSP)
Project Scoping/Timeline

• First Year: Problem Formulation and Scoping – Hazard and Exposure Assessment
 • Project 1: Begin to systematically understand and clarify data gaps in hazard assessment (specifically, dose-response information including low-dose, as well as modes or mechanisms of action)
 • Milestones/Deliverables: Literature review to inform toxicology study designs/answer above scoping questions
 • Project 2: Provide the necessary perspective for use of large biometric databases (NHANES) with ototoxicity as an endpoint
 • Milestones/Deliverables: Assessment of dataset and conclusion generation; dissemination of findings at conferences/meetings

• First and Second/Third Year:
 • Publications of Project 1 and Project 2
 • Project 3: Assessment of current, historically utilized clinical metrics for ototoxicity against new, improved methods (potential for greater precision in determining type and level of ototoxicity with new battery of tests)
 • Milestones/Deliverables: Dissemination of findings at conferences/meetings with intent to publish
 • Project 4: Development and initiation of fit-for-purpose animal studies to address the most significant data gaps identified in Project 1
 • Milestones/Deliverables: Dissemination of findings at conferences/meetings with intent to publish