Natural World versus Laboratory World: Natural Gut Microbiota from Wild Mice Improve Host Fitness in Viral Infection and Carcinogenesis Models

Barbara Rehermann, MD
Liver Diseases Branch, NIDDK, National Institutes of Health
Bethesda, Maryland, USA
Advantages of the Laboratory Mouse Model

- Low costs
- Ease of genetic manipulation
- Wide variety of inbred strains
- High throughput
- Standardized environment

Discovery of basic immunological mechanisms:
- T cell receptor recognition, antibody diversification
- Identification of innate immune receptors and signaling pathways

Most Nobel prizes in immunology in the past 30 years have been awarded for work involving mouse models.
High rate of false positive results in preclinical studies

Results of
28 (37%) mouse studies replicated in human trials
14 (18%) were contradicted by randomized trials
34 (45%) remain untested.

Anti-TNF was developed for treatment of sepsis and protected mice in preclinical studies, but not humans in clinical studies.
Can Animal Models of Disease Reliably Inform Human Studies?

H. Bart van der Worp¹*, David W. Howells², Emily S. Sena²,³, Michelle J. Porritt², Sarah Rewell², Victoria O'Collins², Malcolm R. Macleod³

¹ Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands, ² National Stroke Research Institute & University of Melbourne Department of Medicine, Austin Health, Melbourne, Australia, ³ Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom

The ability of animal studies to detect serious post marketing adverse events is limited

Peter J.K. van Meer⁴,⁎, Marlous Kooijman⁵, Christine C. Gispen-de Wied⁶, Ellen H.M. Moors⁷, Huub Schellekens⁸,⁹

⁴ Utrecht Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, The Netherlands
⁵ Copernicus Institute of Sustainable Development, Innovation Studies, Utrecht University, Heidelbergrlaan 2, 3584 CS, Utrecht, The Netherlands
⁶ Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, The Netherlands
Meta-Genome and Meta-Organism
Advantages of the Laboratory Mouse Model

Variation in the microbiome of the laboratory mouse

Ivanov et al., Cell 2009

OF MICE AND MICROBES

The zoo of bacteria and viruses each lab animal harbors may confound experiments

Servick, Science 2016
Advantages of the laboratory mouse model

Reproducibility

WT: High IgA
WT: Low IgA

Vertical transmission of IgA phenotype
Reproducibility

WT: High IgA

WT: Low IgA

Vertical transmission of IgA phenotype

WT: High IgA

WT: Low IgA

Horizontal transmission of low IgA phenotype

Co-house mice

WT: High IgA

WT: Low IgA

Stappenbeck and Virgin,
Nature 2016
Reproducibility

WT: High IgA

- Vertical transmission of IgA phenotype

- Horizontal transmission of low IgA phenotype

WT: Low IgA

Co-house mice

WT: High IgA

WT: Low IgA

Demonstrate role of microbiome in phenotype

WT: Low IgA

Faecal transplant

WT: High IgA

WT: Low IgA

Demonstrate IgA degradation by commensal microbes

Stappenbeck and Virgin, Nature 2016
Required Information for Publication

Host genetics
- Specify strain using JAX or other commercial vendor nomenclature.
- Original source for purchased or shared mice used for breeders used to create colony.
- For mixed background, include data defining strain percentage (microsatellite analysis, number of markers).
- Define the method used to create the mutation (for example, homologous recombination in embryonic stem cells, transposon mutagenesis, chemical mutagenesis, Cas/CRISPR systems). Show data validating the altered allele.

Experimental methods within mouse facility
- Source of experimental and control mice (for example, bred in facility, purchased from specified vendor; for latter interval from arrival in facility to experiment).
- Control for microbiome effect (for example, littermates, multiple dams, co-housing, faecal transplant, gnotobiotic).
- Breeding scheme to generate experimental and control mice.
- Number of breeding pairs used to generate progeny for analysis.
- Number and gender of mice analysed per experiment.
- Number of experiments performed.
- Antibiotic exposure (type and duration) of breeders and progeny.

Husbandry details
- pH of drinking water.
- Diet source (vendor, nutrient composition), storage (temperature, duration) and treatment (irradiation, autoclave).
- Caging type (for example, ventilated, metabolic).
- Bedding amount per cage and type.
- Frequency and protocol for cage changing.
- Light–dark cycle of room.
- Temperature of room (include range).
- Pathogen screening (organisms tested for, methods, source of analysis in house versus commercial vendor).

Microbiome analysis
- Methods of sample collection, library preparation.
- Analytical pipeline including version and database dates.
- Methods of statistical analysis.
- Specify method used if corrections for multiple comparisons were performed.
Germfree or antibiotic treated

Lab mice in barrier facility

Wild mice *Mus musculus domesticus*
Advantages of the laboratory mouse model

Laboratory World
Normalized and Restrictive Environment
Natural World
Comparative Immunology of Lab and Wild Mice

Serum IgG

T cell differentiation

Abolins et al., Nat Commun 2016
Cytokine production after in vitro stimulation of splenocytes

IL-12p40

IL-13

Abolins et al., Nat Commun 2016
Hypothesis

Laboratory mice lack host-microbe interactions that are physiologically important and found in the natural world.

Question

Can we learn anything from a naturally co-evolved microbiome?
Mus Musculus Domesticus from Maryland are Close Relatives to Standard Laboratory Strains
Mus Musculus Domesticus from Maryland are Close Relatives to Standard Laboratory Strains
The Lab Mouse Gut Microbiome Differs from that of their Wild-Living Kin
The Lab Mouse Gut Microbiome Differs from that of their Wild-Living Kin

PC1 (19.9%)
PC2 (6.67%)

Wild
- 2014
- 2015

Lab
- Charles River
- Jackson
- Taconic
The Lab Mouse Gut Microbiome Differs from That of their Wild-Living Kin
Bio-banking and Selection of Ileocecal Material

<table>
<thead>
<tr>
<th>Wild mice trapping location</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transfer of Natural Gut Microbiota into Pregnant Germ-free Mice

Rosshart et al., Cell 2018
The Wild Mouse Gut Microbiome can be Maintained in a Laboratory Mouse Colony
Machine Learning: Indicator Species Analysis
Do Natural Microbiota Promote Host Fitness?

Virus

Toxins, Mutagens
Virus Model

Survival

Female mice

Male mice

Days post infection

Percent survival

Lab
LabR
WildR

The Wild Mouse Gut Microbiome Confers a Survival Advantage Upon Influenza Virus Infection

Survival

- Female mice
- Male mice

Weight Loss

- Female mice
- Male mice
The Wild Mouse Gut Microbiome Confers a Survival Advantage Upon Influenza Virus Infection

Survival

Female mice

Male mice

Weight Loss

Female mice

Male mice

Virus Titer

Female mice

Male mice
The Wild Mouse Gut Microbiome Confers Traits that Abrogate Excessive Inflammation

Lung Histology

Lab

LabR

WildR
The Wild Mouse Gut Microbiome Confers Traits that Abrogate Excessive Inflammation

Lung Histology

- Lab
- LabR
- WildR

Lung Cytokines and Chemokines

- G-CSF
- M-CSF
- GM-CSF
- CCL2 (MCP-1)
- CCL3 (MIP-1α)
- CCL4 (MIP-1β)
- CCL20 (MIP-3α)
- CXCL1 (GROα/KC)
- CXCL2 (MIP-2)
- TNF-α
- IL-6
- IL-10
Cancer Model

Inflammation score

LabLabR WildR

G

AOM

AOM

2% DSS 2.5% DSS 2.5% DSS

Day 12 to 55:

****P<0.0001 WildR versus Lab

***P<0.001 WildR versus LabR

Percent initial weight

0 6 12 18 24 30 36 42 48 54 60 66 Days post AOM injection

Inflammation score

0 1 2 3 4 Lab LabR WildR

The Wild Mouse Gut Microbiome Protects from Colorectal Tumorigenesis

![Image showing comparison between Lab, LabR, and WildR in proximal colon and rectum with statistical data on number of tumors and tumor area/colon area.](image-url)
The Wild Mouse Gut Microbiome Protects from Colorectal Cancer

H&E stain

Movat stain

![Microscopic images of tissue sections stained with H&E and Movat](image)

Invasiveness score

![Box plot showing invasiveness scores for different groups](image)
Summary

Chimeric Meta-Organism

Fitness Promoting Microbes

Tractable Genetics
Animal models with natural microbiota should

• enable the discovery of protective mechanisms that are relevant in the natural world and absent in the laboratory.

• increase the predictive utility of laboratory mice for modeling complex diseases in the natural world.
Acknowledgements

Immunology Section, Liver Diseases Branch, NIDDK

- Stephan Rosshart
- Brian Vassallo
- Ashli Hunter

Collaborators

NIAID
- Davide Angeletti
- Heather Hickman
- Jon Yewdell

NCI
- Jonathan Badger
- Giorgio Trinchieri

FDA
- Kazuyo Takeda

University of North Carolina
- Andrew Morgan
- F. Pardo-Manuel de Villena

Baylor College of Medicine
- Diane Hutchinson
- Nadim Ajami

Disclosure: NIDDK license to Taconic