ILSI-HESI SETAC *In-Vivo* Bioaccumulation Database Workshop

Annie Weisbrod

The Hague, 5 May 2006

Contributions from: Tom Parkerton (ExxonMobil), Mark Bonnell (Env Canada), Larry Burkhard (US EPA), Kent Woodburn (Dow Chemicals), Jon Arnot (Trent University)

Workshop basics

- Background & Purpose
- Participants
- Session topics & overviews
- Next steps & recommendations
- Review of in vivo bioaccumulation protocols

Background

- The advance of PBT programs is challenged by reality.
 - Few empirical bioaccumulation (B) data are available for the 10,000s of commercial substances that require evaluation.
 - Most preliminary B assessments rely on computer model predictions and *in vivo* data extrapolation.
- January 2005: ILSI-HESI agrees to coordinate workshops to gain scientific & global consensus for advancement of B assessment techniques.
- April 2005: Techniques & methods to improve B assessments (e.g. reduce animal testing & cost of in vivo tests, meet regulatory timing needs). Outcomes:
 - Partnerships to develop in vitro tests & translations, generate data on representative chemicals, communicate how to use tiers of information from B and ADME models, in vitro and in vivo lab and field studies.
 - Three more workshops needed: Review existing B data, Use of ADME methods to improve B assessment, Needs in the EU.
 - 4th topic for Future: How to use & collect field data

Purpose of Workshop

- November 2005: Experts from governments, industry, and academia examined the availability and quality of *in vivo* fish bioaccumulation data, and proposed steps to improve bioaccumulation predictions.
 - Focus on fish data because regulatory assessments & legislation tend to be on bioconcentration of substances from water into fish.
 - Workshop goals were to understand where the data are, overlap among databases, the chemical diversity of data, and how to improve access for assessors and modelers.
 - A majority of the available data appear to have been used in the development and testing of QSARs and computer models used today.
- March 2005: In vitro ADME Workshop (Sue & Birgit)

J Arnot Trent University

Participants: 4 sectors, 3 continents

F Gobas	Simon Frasier University
O Mekenyan	University of Bourgas
B Boethling	US EPA – Off. Pollut. Prev. & Toxics
M Bonnell	Env Canada - New Substances
T Bridges	US Army Corps of Engineers
L Burkhard	US EPA - Env Effects Research Lab
P Cureton	Env Canada - Existing Substances
M Lin	Env Canada - Existing Substances
C Russom	US EPA - Env Effects Research Lab
Y Sakuratani	METI-NITE, Japan
T Traas	RIVM, Netherlands
P Howard	Syracuse Research Corporation
J Tunkel	Syracuse Research Corporation

_ Lucas	Leadscope			
C Yang	Leadscope			
C Sachse-Zaquez	Res. Inst. for Fragrance Materials			
D Salvito	Res. Inst for Fragrance Materials			
T Springer	Wildlife International			
< Thomas	ILSI-HESI			
W DeWolf	DuPont			
3 Hoke	DuPont			
S Jackson	BASF			
T Parkerton	ExxonMobil Biomedical			
D Powell	Dow Corning			
A Weisbrod	Procter & Gamble			
< Woodburn	Dow Chemical			

Workshop Sessions

- 1. Session 1 Overview of existing data sources on fish in vivo bioaccumulation
 - BCFWIN BCF Database Syracuse Research Corp & US EPA
 - Environment Canada BCF & BAF Database
 - Japan METI-NITE BCF Database
 - US EPA OPPT (PMN) BCF Database
 - US EPA ORD Aquire database
 - RIVM Database
 - CONCAWE (Hydrocarbons) Database
 - US ACE ERDC BSAF Database
 - US EPA ORD Superfund BSAF data
 - Review of BCF data for modelling Mekenyan POPs
 - OUTPUT = Publication for Environmental Health Perspectives

Main bioaccumulation data sources

不

Data Source	# chemicals	Public access?
Japan METI-NITE database	~800 "existing" ~3100 "new"	www.safe.nite.go.jp/english/index.html "New chem." data are proprietary
U.S. EPA AQUIRE database	~700	www.epa.gov/ecotox
U.S. National Library of Medicine Hazardous Substances (HSDB)	hundreds	http://toxnet.nlm.nih.gov.
Env Canada BCF and BAF database	950	Request from Env Can.
RIVM database	~700	No.
SRC Fish BCF & Environmental Fate	694	http://esc-plaza.syrres.com/efdb.htm
CONCAWE Hydrocarbons BCF	84	No.
U.S. Army ERDC BSAF database	205	http://el.erdc.usace.army.mil/dots/database.html
U.S. EPA Superfund BSAF data	In progress	Expected 2007
"Handbook of Physical Chemical Properties and Environmental Fate"	hundreds	Mackay et al (2006). CRC Press LLC
"Comparative QSAR"	209	J Devillers (1998). Taylor & Francis Publishers

Workshop Sessions

1. Session 1 – Data Sources

2. Session 2 – Data base content and fields

- Prioritize needs for a BCF database combining data from all sources, e.g. data quality assessment
- Identify database fields most useful for BCF evaluation and use
 - Organism properties (species, weight)
 - Chemical attributes (CAS #, SMILES)
 - Study considerations (lab or field, static or flow-thru, duration)
 - Analytical methods (reported, parent-specific, all media & tissues)
 - Data analysis (steady state, first-order kinetics, growth & lipid corrections)
- OUTPUT = Recommended fields for OECD BCF template, CEFIC-EURAS database, AQUIRE BCF database

Workshop Sessions

1. Session 1 – Data Sources

2. Session 2 – Data base content and fields

3. Session 3 - Critical evaluation of published BCF studies

4. Session 4 & 5 – Working groups

Why evaluate B data? Motivation

- Increasing use of *in-vivo* B data in decision-making, e.g.
 - PBT evaluation in EU under REACH and Water Framework Dir.
 - PBT categorization of Canadian Domestic Substance List
- Experimental data may not follow a specific guideline, e.g. OECD 305, but can still yield useful information.
- There is no harmonized / accepted guidance for evaluating in vivo B data
- The lack of systematic B data evaluation & compilation impedes:
 - Consistency in decision-making
 - > Development of improved predictive models
 - Prioritization for collection of new B data

Goals of Session - evaluating data

- To develop consensus on the guidance to evaluate exiting, and reporting future, in-vivo lab bioaccumulation data ... Suggest use of Klimisch approach:
 - Reliable
 - Reliable with restrictions
 - Not reliable (invalid for use)
 - Not assignable (not enough study detail)
- To test the practicality of the guidance
 - Develop an initial check list of study considerations
 - Conduct break-out exercise in which small groups (3-4 persons) apply the check list in assessing published fish BCF studies
- To identify additional considerations relevant for field bioaccumulation studies

What we did - Checklist

- Proposed check list for lab B data evaluation & reporting (not all here...selected fields)
 - Test substance identity, purity & water solubility
 - Fish size & lipid content
 - Validity & nature of test substance analysis
 - Parent-specific vs. non-specific, e.g. total radioactivity
 - Exposure conditions of test
 - Static vs. flow-through
 - Constant vs. variable concentrations (e.g. Banerjee method)
 - Magnitude of test concentration relative to solubility limit / toxicity
 - Organism health, water quality conditions during test
 - Details of reported BCF endpoint
 - Steady-state value
 - Unambiguous units (wet, dry, lipid basis)
 - Correction for growth-dilution and /or bioavailability
- Evaluated ~15 published manuscripts in teams of 2-3.

Findings from study examination

- Having a 'consensus' check list is helpful.
 - Consistent basis to evaluate BCF data across studies and to guide the publication of future studies.
 - From this exercise, we added more considerations for:
 - Sample design
 - Spatial & temporal variability
 - Site-specific assumptions (e.g. sediment-water equilibrium)
 - Approach used to address undetected test substances
- The specification of rigid criteria that define reliability classes for fish BCF data is not straight-forward.
 - Existing literature often omit key study details (next slide)
 - Weight of evidence / professional judgment required
 - Schemes to assess BCF reliability depends on user needs
 - Can vary, but must be transparent (next slide)
- Further work to optimize and standardize the design of field bioaccumulation assessments given their resource intensity

Recommendations

- 1. The disparate B datasets should be combined into one easily accessible database to improve data accessibility and eliminate duplicate records.
- 2. Reliability of existing in vivo B data should be evaluated.
 - Predictive models cannot be improved using unreliable data; few current databases have assessed quality.
- 3. Current assessments need to go beyond K_{ow}-based decisions
 - BCFs estimated using only Kow neglect the effects of biotransformation and differential uptake process efficiencies of different chemicals.
 - New in-vivo and in-vitro approaches are needed to focus resources and minimize unnecessary animal use for rational chemicals management.
- Given the potential importance of dietary pathways in chemical uptake, and of chemical biotransformation, there is a need to understand real world mechanisms.
 - BCF values do not include the trophic magnification or dilution processes observed in nature.
 - **BAF and BSAF can be important to understand.**

Next Steps

- Two publications summarizing the data sources and guidance on study quality is needed
 - > Manuscripts submitted to EHP & IEAM in May/June 2006.
- Combine data from various sources to eliminate duplicates and improve access for modellers & assessors.
 - Env Canada, RIVM, Mekenyan (with METI?) working to compile full set into US EPA Aquire.
 - CEFIC LRI for EURAS for "gold standard database"
- A review of the chemical domains of existing models would be helpful to identify areas for expansion (i.e. which chemical classes would benefit from having *in vivo* B data?).
- Communicate the complexity of B in nature.

Summary of *in vivo* fish bioaccumulation protocols

OECD 305 BCF test Dietary exposure Short term BCF kinetic tests

Respirometer-Metabolism Chamber D Huggett, Pfizer 96-hr In Vivo ADME Screen (1 Kg trout)

Fish Bioconcentration Test

- **STANDARD** Fish BCF study: OECD 305E/EPA 1730
 - ¹⁴C radiolabeled material
 - two dose levels
 - 28-day water exposure; 14-day clearance
 - Rainbow trout, bluegill, fathead minnow, zebrafish
 - expensive (\$125,000), animal intensive
- Modified OECD 305E test, kinetic modeling:
 - Measure uptake rates; calculate depuration rate
 - shortens experimental time frame (5-14 days)
 - reduces animal usage and cost (analytical)
 - equivalent data quality output (i.e., BCF value)
 - requires more complex data analysis

K Woodburn, Dow

BCF comparison: OECD/EPA method vs. short-term, exposure-only analysis

• 7-day exposure only, no clearance, with samples generally taken on days 1, 2, 4, 7

		<u> </u>	<u>DECD: 42-a Study</u>		<u> </u>	e	
Chemical	Log K _{ow}	k1	k2 (km)	BCF	k1	k2*	BCF
EL-161	5.1	365	0.27	1350	260	0.25	1040
XDE-105	4.5	16	(0.42)	40	15	(0.30	50
butyl ester	3.3	10	(20)	0.5	36	(63)	0.6
methyl ester	3.8	195	(85)	2.2	154	(0.84)	1.8
Dowco 233	-0.5	0.7	0.8	~1	2.3	0.4	6
XDE-795	4.7	1440	0.31	4650	1560	0.36	4342
XDE-179	4.7	480	(0.28)	1730	520	(0.65)	800

* From $dC_{fish}/d_t = k_1 * C_{water} - k_2 * C_{fish}$. To solve simultaneously for k1 and k2, fish and water residue data are analyzed with software designed for modeling dynamic systems, such as SimuSolv and Berkeley Madonna. Assumes first order kinetics.

K Woodburn, Dow

OECD 305/EPA 1730: Are Two Separate Exposure Experiments Really Necessary?

- OECD 305/EPA 1730 currently requires two separate exposure levels (1x, 10X)
- Data collected over a range of K_{ow} (N=6) suggest dual exposures are not necessary to validate BCF and represent an unnecessary use of animals, time, \$.

K Woodburn, Dow

Dietary Bioaccumulation Test

- Advantages vs. OECD BCF test:
 - Allows higher / constant test exposures for poor water soluble compounds
 - Improves analytical detection of parent compound
 - Allows characterization of biomagnification
 - Reduces fish required & cost (50-75%)
- Basic Method
 - Spike substance into fish diet (14% lipid); measure.
 - Feed 3% bwd spiked diet to trout for 7-10 days (uptake)
 - > Transfer exposed fish to clean food (depuration)
 - Analyze fish at different depuration times (0, 1, 2, 4, 7, 14 days)

$$\mathsf{BMF} = \frac{\mathsf{CFish}_{ss}}{\mathsf{CDiet}} = \frac{\alpha \mathsf{I}}{\mathsf{K}_{e}}$$

T Parkerton, ExxonMobil

What is relevant?

- Field data are complex, and not well predicted by lab tests.
- Models that appropriately incorporate all inputs and outputs might be OK....work remains...

Why Lab BCF ≠ Field BAF

- Lab-derived BCF
 - Water based exposure
 - No growth
 - Consistent % lipid
 - Constant Conditions
 - Chemical exposure
 - Temperature
 - Measures uptake & depuration kinetics
 - May or may not include metabolism processes
 - Steady-state conditions

Steady-State BCF and BAF (lipid normalized & freely dissolved) (not metabolized)

2

- Field-derived BAF
 - Water & food exposures
 - > Organism life history
 - Diet, Growth, Food web structure, Trophic level, Metabolism, and Migration
 - Ecosystem conditions vary
 - Temporal and spatial variability in exposure
 - Sediment-water column chemical relationships
 - Temperature
 - Simultaneous exposure to all substances
 - Conditions: Depends upon past and current loadings
 - Commonly pseudo-steady-state conditions
 - Provides ultimate "Truth"

L Burkhardt, U.S. EPA

Thanks for listening. Questions?