RBL cell lines and Serum IgE as Alternatives to In Vivo Methods

TNO | Knowledge for business

HILD COLUMN

Jolanda van Bilsen, Ph.D.

Outline

- Introduction Rat Basophil Leukemia cells (RBL)
- RBL assay
- Evaluation of three RBL cell lines
- Critical variables RBL responses
- Conclusions

Introduction

Type I hypersensitivity reactions

Critical factor: allergen-specific IgE

Human:

• In vitro:

- human basophils
- RBL assay

Tool Shine	Type I		
Immune reactant	IgE		
Antigen	Soluble antigen		
Effector mechanism	Mast-cell activation		
	Ag		
Example of hypersensitivity reaction	Allergic rhinitis, asthma, systemic anaphylaxis		

Adapted from Immunobiology, Janeway

• First reports in '70s RBLs:

basophilic leukemia in rats treated with carcinogen β -chlorethylamine

o Eccleston et al., 1973, Nature New Biol. 244:73-76

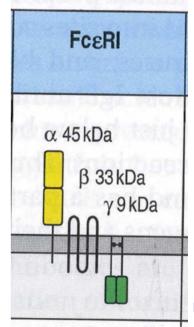
- o Kulczycki et al., 1974, J.Exp.Med. 139: 600-16
- o Conrad et al., 1976, Immunochemistry 13:329-32

• Several criteria: RBL similar to mucosal mast cells

- Staining with alcian blue but not safranin
- Sparsely granulated ultrastructure
- Granula contain RMCP-II

o Seldin et al., 1976 Proc. Natl. Acad. Sci. USA 82: 3871-75

Crosslinking FcERI with IgE + antigen → degranulation

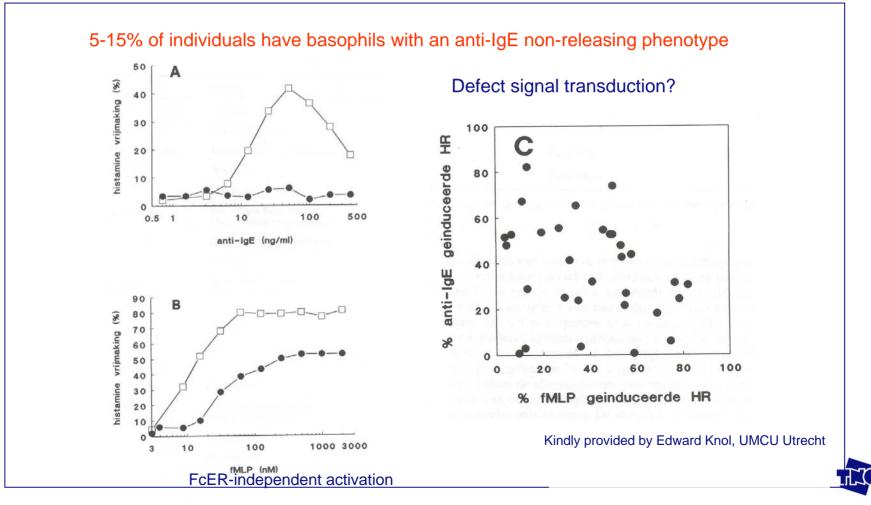

90's: Transfection RBL cells with human FcERI

Purpose: - study possible allergenicity of novel foods (- screen patient sera for diagnosis: sensitivity too low)

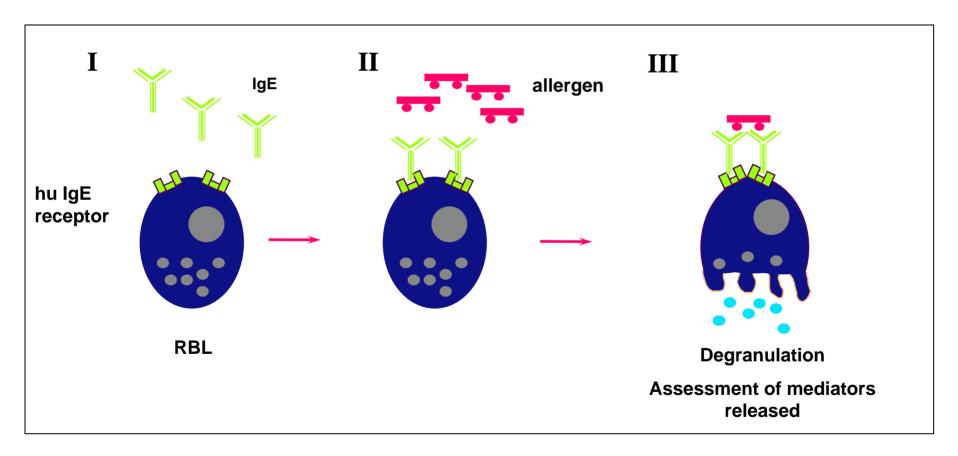
> RBL 30/25 $\rightarrow \alpha$ -chain expression • Vogel et al., 2005, Allergy 60:1021-28

► RBL hEla-2B12 → α-chain expression • Takagi et al., 2003, Biol. Pharm. Bull., 26:252-255

→ RBL SX-38 → α , β and γ -chains expression • Wiegand et al., 1996, J. Immunol 157:221

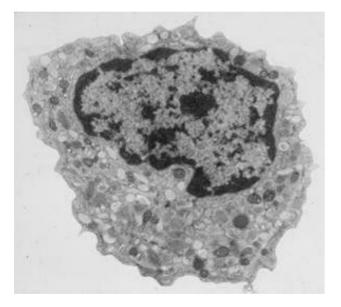

Adapted from Immunobiology, Janeway

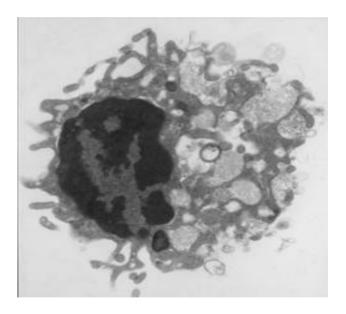
4 units: tetrameric structure 1α , 1β , 2γ chains



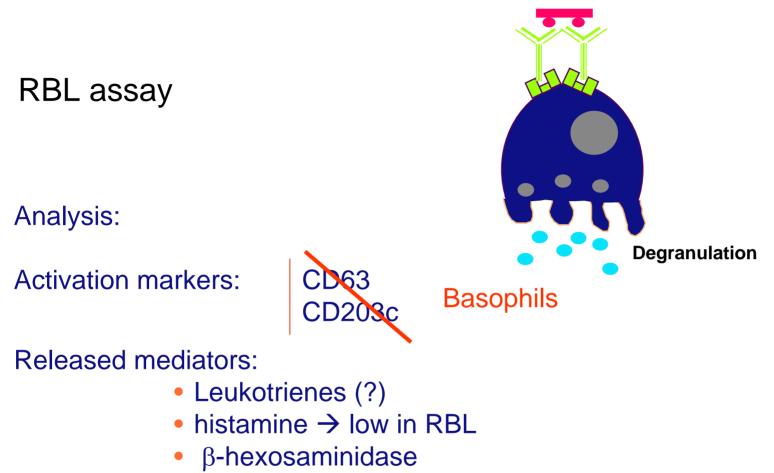
Pro's RBL:

- can be cultured permanently (more flexibility)
- independence from availability of human basophils
- improved standardization

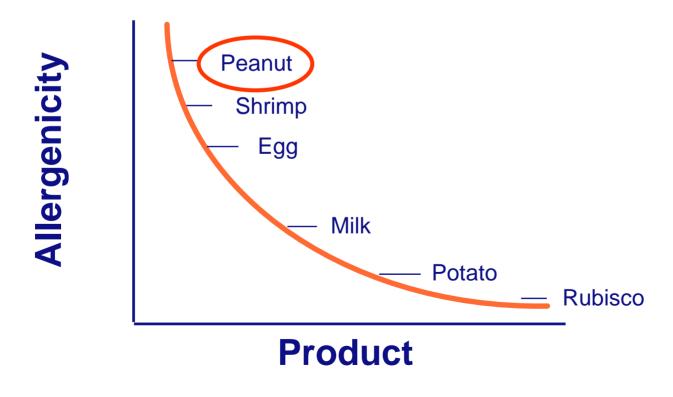

RBL-assay



Degranulation: all or nothing



Kindly provided by Edward Knol, UMCU Utrecht

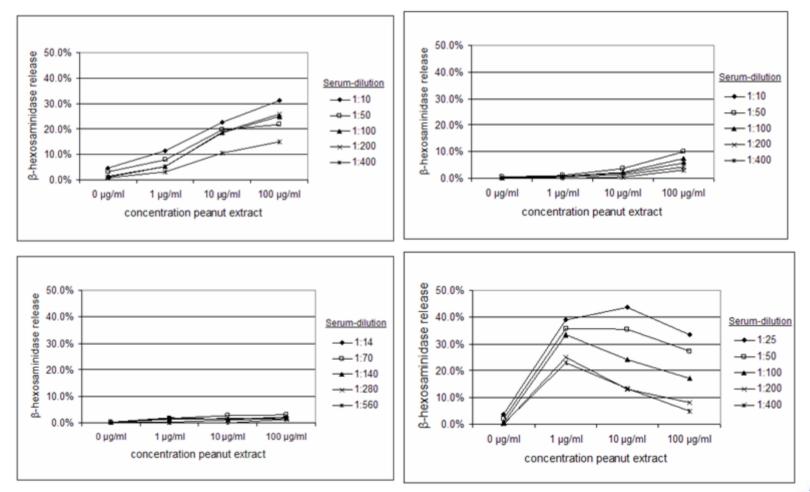


- clinically relevant
- cheap
- quick
- easy

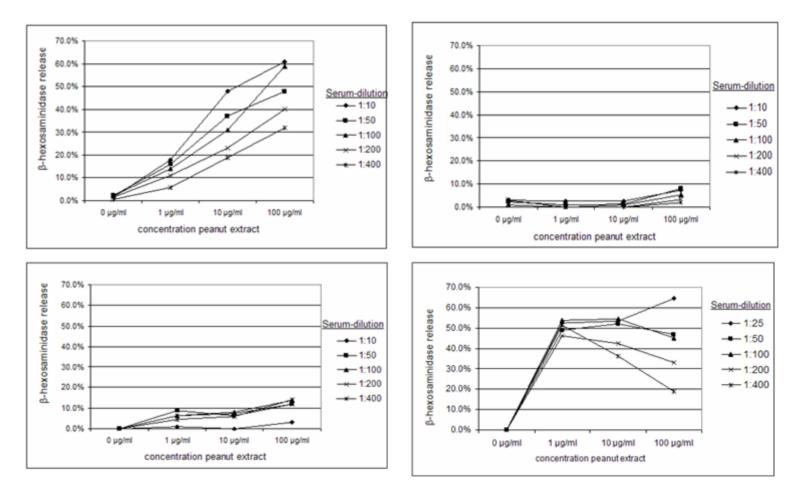
Evaluation of three RBL cell lines using peanut-allergic patient sera + peanut extract

Relative Allergenicity

Overview patient sera


Peanut allergic subject	peanut-specific IgE titer (kU/l)	Total IgE (kU/l)	clinical symptoms after peanut exposure
1	36	>5000	serious/moderate (OS, rc)
<u>2</u>	>100	>5000	moderate (OS, ae)
<u>3</u>	14.6	>5000	mild (OS)
4	>100	>5000	serious

OS (oral symptoms), ae (angioedema), rc (rhinoconjunctivitis).


Passive sensitization of RBL using serum from peanut-allergic individuals

RBL 30/25

Passive sensitization of RBL using serum from peanut-allergic individuals

RBL SX-38

Passive sensitization of RBL using serum from peanut-allergic individuals

RBL hEl_a-2B12

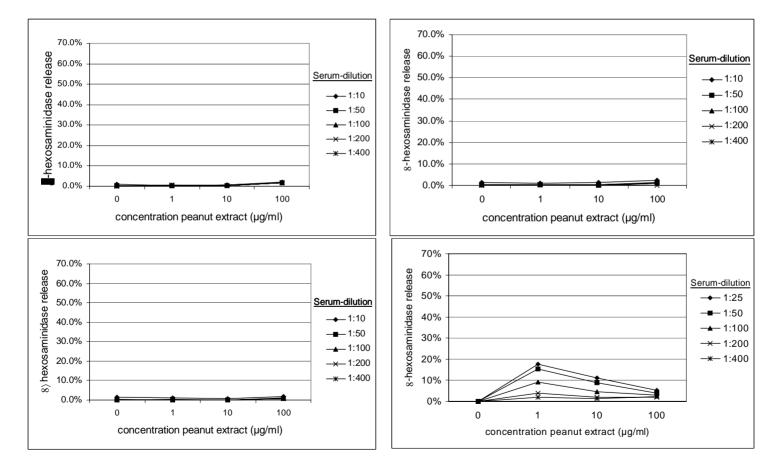


Table: Summary functionality of RBL cell lines using individual sera

Peanut Allergic Subject	RBL-hEI _a - 2B12	RBL-30/25	RBL SX-38	peanut-specific IgE titer (kU/l)	Total IgE (kU/l)	clinical symptoms after peanut exposure
1	- <	++	+++	36	>5000	serious/moderate (OS, rc)
2	-	-	-	>100	>5000	moderate (OS, ae)
3	-	-	-	14.6	>5000	mild (OS)
4	+	++	+++	>100	>5000	serious

OS (oral symptoms), ae (angioedema), rc (rhinoconjunctivitis).

Results peanut-allergic sera in RBL assay:

- No robust degranulation
- Low sensitivity (as described by others)
- Suggestion link degranulation versus clinical symptoms. Needs to be further explored

Critical variables determining RBL responses

- 1. Human IgE receptor expression
- 2. Membrane-bound allergen-specific IgE
- 3. Intrinsic cellular sensitivity of RBL
- 4. Cellular reactivity of RBL
- 5. Culturing of RBL
- 6. Allergen structure
- 7. Serum choice

Critical variables determining RBL responses

- 1. Human IgE receptor expression
 - Regulated by total serum IgE
 No IgE → endocytosed + degraded
 - Endogenous rat IgE receptor
 → induces downregulation human IgE receptor (competition β, γ chains)
 - Expression diminishes during culture

Expression human FcERI diminishes during culture

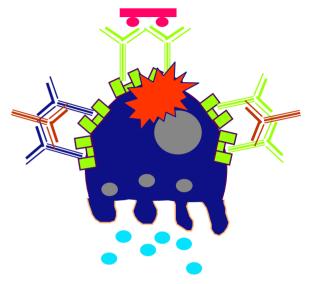
Critical variables determining RBL responses

- 2. Membrane-bound allergen-specific IgE
 - Fraction allergen-specific IgE in total serum IgE
 - Role avidity (polyclonal response)

- 3. Intrinsic cellular sensitivity of RBL
 - Amount IgE necessary for 50% degranulation
 Variable during culture

Critical variables determining RBL responses

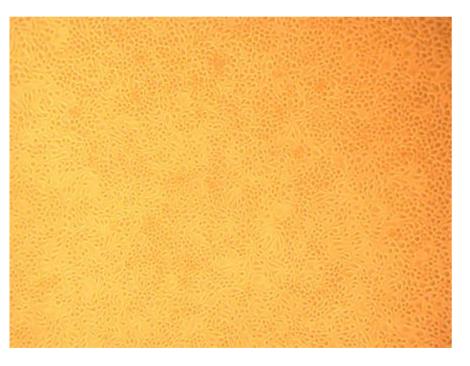
- 4. Cellular reactivity
 - Maximum response after optimal IgE-mediated stimulation
 Variable during culture
 - Positive controle: which one?

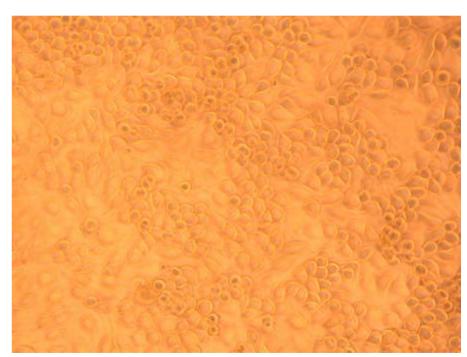


Positive control. What is 100% release???

Assay: Serum IgE + allergen

- I. Triton-X
 - \rightarrow max. release available β -hex in assay
- II. Purified human IgE + anti-IgE
 - → max. release under optimal IgE-mediated stimulation
- III. Serum IgE + anti-IgE
 - → max. release induced by serum
 - → more 'physiological' circumstances

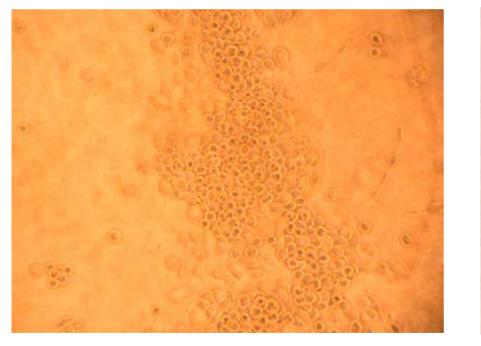

21

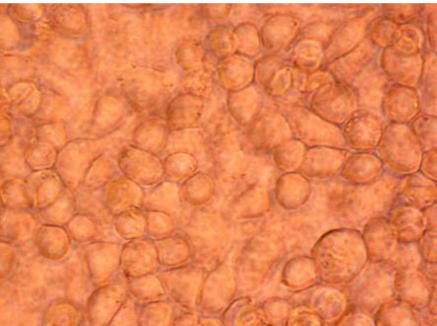


Critical variables determining RBL responses

- 5. Culturing RBL
 - Expression FcER
 - Thick / thin culturing for best recovery
 - Influence intrinsic sensitivity

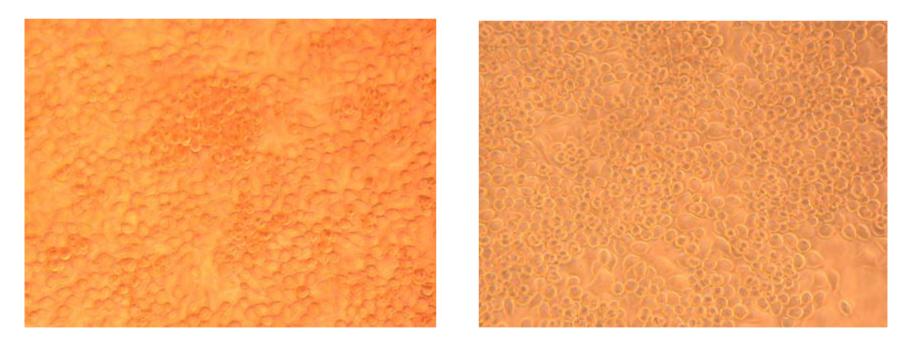
RBL 30/25 releasibility is related to growth at high density >30 x 10⁶ per large flask





Kindly provided by Edward Knol, UMCU Utrecht

RBL 30/25 releasibility is related to growth at high density



Kindly provided by Edward Knol, UMCU Utrecht

RBL 30/25 releasibility is related to growth at high density

Kindly provided by Edward Knol, UMCU Utrecht

Variables determining RBL responses

- 6. Allergen structure
 - o number of Ig binding epitopes \rightarrow better crosslinking?
 - o aggregates allergen
 - o purified allergen identical to 'in vivo' allergen etc.
 - Antigen RAST/CAP never identical to usage in RBL assay
- 7. Choice serum
 - Clinically well documented sera (DBPCFC)
 - Which antigens / epitopes recognized?
 - Avidity IgE to antigen
 - Influence concentrated serum to viability RBL (>20%)
 - Optimization each assay per serum

Conclusions

- RBL assay relatively unsensitive, not to be used for diagnostics
- Opportunities for screening allergenicity novel foods:

Use well characterized antigens (number epitopes, aggregates, monomers etc)

- Use well characterized sera (which antigens / epitopes, preferrably DBPCFC); Unpooled / no loss viability
- Optimized culturing strategy

Acknowledgments

Mary-lène de Zeeuw-Brouwer Dr. Léon Knippels (Numico Research, Wageningen)

Prof. Dr. Stefan Vieths Dr. Lothar Vogel

Dr. Gregory Ladics

The miracles of science-

