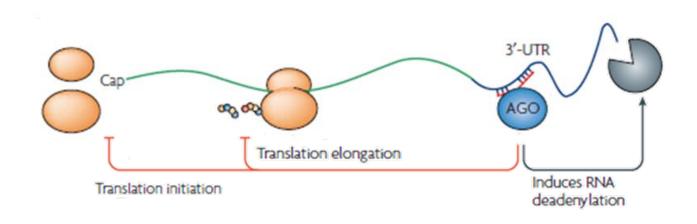

Assaying microRNAs in biofluids for detection of drug-induced cardiac injury


HESI Annual Meeting
State-of-the-Science Session
June 8, 2011

Karol Thompson, PhD
Center for Drug Evaluation & Research
US Food and Drug Administration
Silver Spring, Maryland

MicroRNAs are short, non-protein coding RNAs that are synthesized from intergenic regions and processed to a mature size of 21-24 nucleotides

Mature microRNAs repress gene expression by binding to homologous sequence in the 3' region of mRNAs as part of a ribonucleoprotein complex.

From Hutvagner and Simard. Argonaute proteins; key players in RNA silencing. Nature Reviews Molecular Cell Biology 9:22,2008.

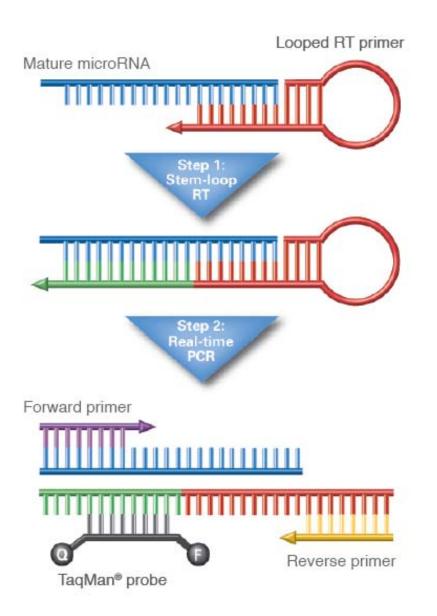
HESI technical committee on the application of genomics to risk assessment

- Formed in 1999 to develop a collaborative scientific program to address issues, challenges, and opportunities afforded by the emerging field of toxicogenomics.
- MicroRNA was adopted as a new project area at the October 2009 plenary meeting
 - □ Potential utility in toxicology remains a gap
- MicroRNA working group
 - □ Co-Chairs: Tim Schaiff (Pfizer), Philippe Couttet (Novartis), and Karol Thompson (CDER, FDA)
 - □ Raegan O'Lone (HESI program manager)
- Workshop held on October 19, 2010 to assess the state-ofthe-science on use of microRNAs in toxicological applications

Workshop Agenda

	Progress on the use	of microRNAs as	biomarkers	of injury	/
--	---------------------	-----------------	------------	-----------	---

 Evaluation of techniques for genome-wide miRNA measurements Dr Graham Brock, Pfizer Issues associated with microRNA measurements Dr Kai Wang, ISE
 MicroRNAs as injury markers in urineDr Peter Yuen, NIDDK MicroRNAs as injury markers in tissueDr Philippe Couttet, Novartis
Design of studies to assess microRNAs as injury markers
□ Biomarkers of cardiotoxicityDr Greg Falls, GSK
□ Biomarkers of nephrotoxicity
□ miR-122 as a hepatotoxicity biomarkerDr Ameesha Batheja, J&J
□ Biomarkers of testicular toxicityDr Hungyun Lin, Pfizer


Potential utility of circulating microRNAs as injury biomarkers

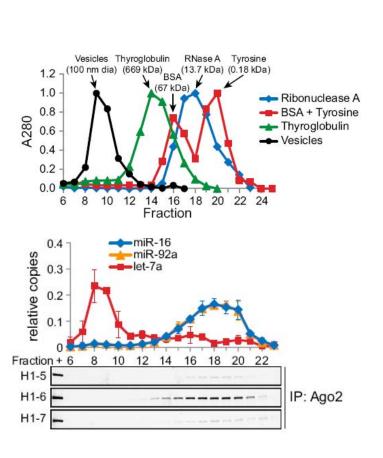
- Small total number of microRNAs compared to mRNAs (~1000 human miRNAs)
- A few microRNAs exhibit highly specific tissue expression
- microRNAs are rapidly released from tissues into circulation with development of pathology
 - Tissue-selective microRNAs may be useful circulating biomarkers of tissue injury at specific sites
- Extracellular microRNAs are stable in blood and urine
 - However, purified microRNAs are rapidly degraded when added to blood
- Low barrier for new assay development
 - ☐ High conservation of sequence across species
- microRNA can be quantitated using highly sensitive, modified RT-qPCR methods
 - Most methods extend the length of microRNAs prior to PCR

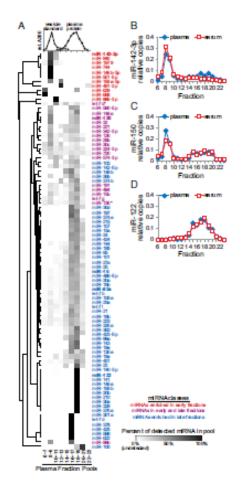
۲

One approach* uses a target-specific stem-loop RT primer (specific to the mature miRNA target) to extend the length of the microRNA at the 3' end of the microRNA.

*Applied Biosystems Taqman microRNA assays

Workshop Summary: Challenges with the use of circulating microRNAs as biomarkers of injury


- Short sequence length is a challenge to hybridization specificity
 - Poor comparability between microRNA microarray platforms
- Heterogeneity in microRNA length "isomirs"
- Potential assay interference from precursor forms of microRNA
- Biofluids contain inhibitors of RT-qPCR enzymes
- MicroRNAs in blood cells can contaminate biofluid samples


7

Workshop Summary: Challenges with the use of circulating microRNAs as biomarkers of injury

- microRNA levels in biofluids too low to quantitate
- Preamplification PCR steps required to measure in biofluids - introduces bias?
- No consensus on endogenous microRNA controls in biofluids
- Quantitative or qualitative difference in microRNAs recovered from serum and plasma? Effect of serum/plasma protocol?
- Non-homogenous physical state of microRNAs in circulation - associated with protein and/or encapsulated in lipid vesicles in plasma/serum

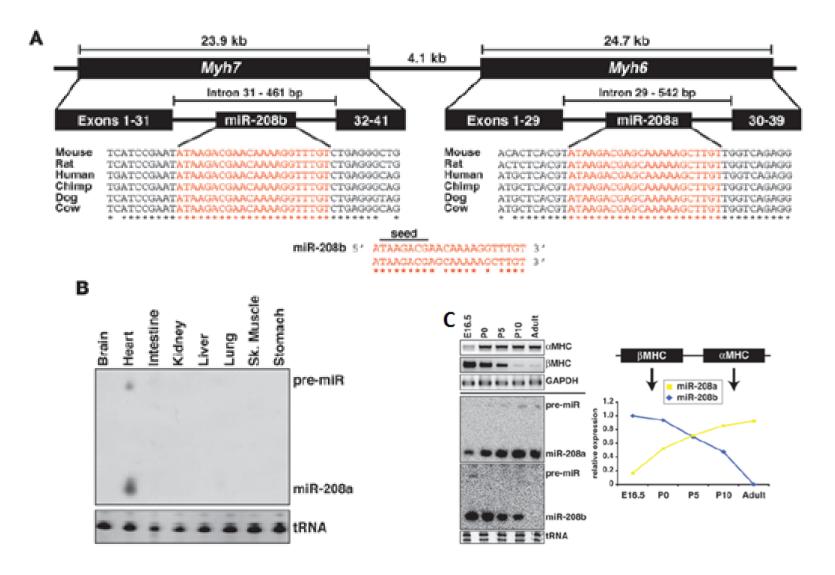
The majority of circulating microRNAs in human plasma are found in protein complexes that contain Ago2

From Arroyo et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. PNAS 2011 (prepublication)

M

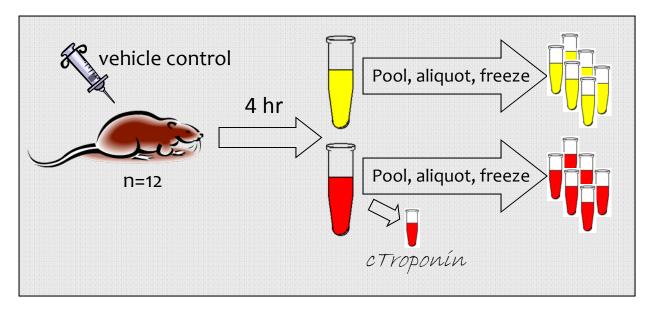
Collaborative study on the use of microRNAs in toxicological applications

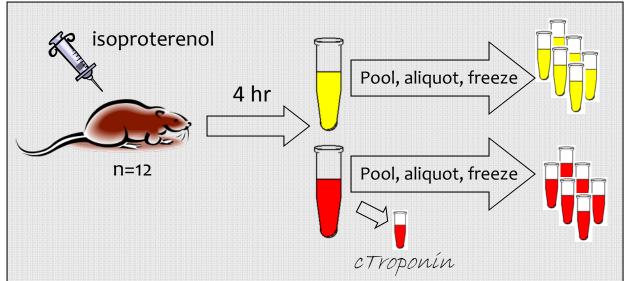
- Identify key pre-analytical variables for the successful quantitation of injury-related microRNAs in serum, plasma, and urine. Verify methods that can be implemented in pre-clinical toxicology studies.
- In a model of drug-induced tissue injury, assay microRNAs in biological samples, anchored to protein biomarkers and histopathology
- Samples will be generated from an in-life study run at a central site
- Samples will be distributed to multiple laboratories and analyzed using a standard protocol and defined protocol modifications. All protocols involve absolute quantitation of microRNA levels.

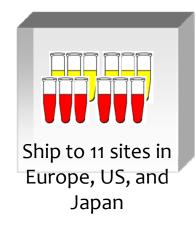

Model system: Isoproterenol-induced myocardial injury in rats

- Phase I: Dose selection study
 - □ Interim endpoint: Level of serum cardiac troponin I (cTnI) 4 hr after single sc dose of 0, 0.5, 1, 2, or 4 mg/kg isoproterenol in male Hanover Wistar rats
 - Doses based on study from HESI Troponins WG
 - □ Terminal endpoint: Histopathology of the heart at 24 hr after single sc dose of 0, 0.5, 1, 2, or 4 mg/kg isoproterenol in male Hanover Wistar rats to confirm necrosis.
- Phase II: Serum vs Plasma comparison in an injury model

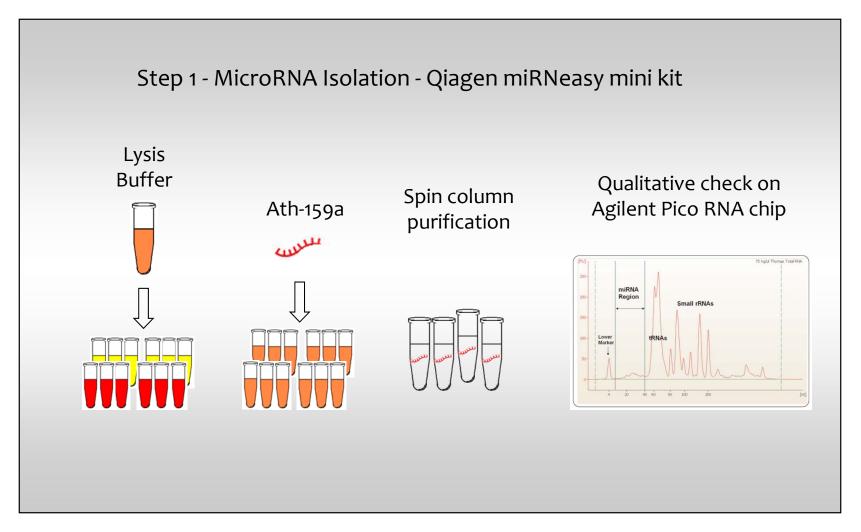
Evidence of miRNAs as circulating markers of acute drug-induced cardiac injury

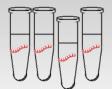

- Plasma miR-208 as a biomarker of isoproterenol induced myocardial injury in the rat
 - ☐ Ji et al. Clin Chem 55: 11, 2009
 - □ Plasma miR-208a elevated 3-24 h after dosing
 - ☐ Similar time course to cTnI
- Circulating microRNAs associated with AMI
 - □ miR-208 ^{2, 4} (Cardiac muscle specific)
 - miR-499 1, 2, 3, 4 (Cardiac muscle enriched)
 - □ miR-1 ^{3, 4, 5} (Enriched in muscle not selective for cardiac)
 - \square miR-133a/b^{3, 4} (Enriched in muscle not selective for cardiac)
 - (1) Adachi et al. Clin Chem 56:7, 2010; (2) Corsten et al. Circ CV Genet 3:499, 2010; (3) D'Alessandra et al. Eur Heart J 31:2765, 2010; (4) Wang et al. Eur Heart J 31:659, 2010; (5) Ai et al. BBRC 391:73, 2010


Cardiac-specific expression of miR-208a and miR-208b parallels their host genes Myh6 and Myh7

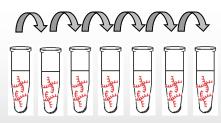


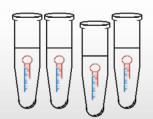
From Callis et al. J Clin Invest 119:2772-86, 2009

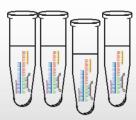

Sample generation for Phase II



Standard protocol for microRNA analysis in Phase II


Steps 2 & 3 - Multiplexed Reverse Transcription and Preamplification


MicroRNA preps from serum and plasma


Reverse transcription using Megaplex RT primers (Rodent Pool A v2.0 - stem loop RT primers for 226 rat > miRNAs + ath-159a)

Preamplification using Megaplex preAMP primers (for 226 rat miRNAs + ath-159a)

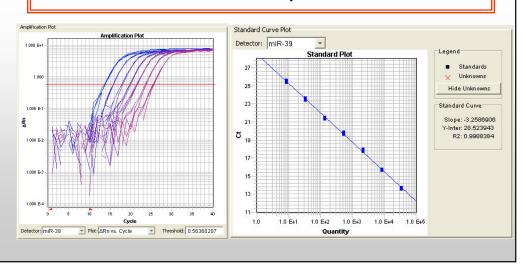
Serial dilutions of synthetic targets (miR-1, miR-208a, miR-499, miR-16)

12 cycles

Standard protocol for microRNA analysis in Phase II

Step 4 - Real Time PCR Amplification

Taqman microRNA assays



Normalize using Ath-miR159 Ct

Absolute quantitation of target by calculating copy number from standard curve

Report microRNA levels as copy number per mL serum or plasma

Analysis of results from Phase II

- Variables include
 - Site to site (~10 sites)
 - Reproducibility between technical replicates
 - Serum vs plasma
 - Treatment vehicle control vs isoproterenol
 - Standard protocol vs variations
 - microRNA targets (for cardiac injury)
 - ☐ Limits of detection for each target from standard curves
 - Normalization methods
 - Protein-associated vs lipid vesicle-associated targets (optional targets)

MicroRNA Collaborative Study Phase III - Urine vs Blood sample in injury model

- Can injury-associated microRNAs detected in plasma also be detected in urine?
- What is the optimal protocol for detection of injury-associated microRNAs in urine?
- ☐ In-life study design: same model system as Phase II?
- □ Overnight urine collection at 18-24 hr time point
- ☐ Urine sampling: neat vs exosome enrichment? Exosome enrichment protocol?
- ☐ Reference miRNA for urine TBD

Anticipated Results

- Better understanding of preanalytical steps affecting microRNA detection and quantification in biofluids in drug-induced injury models
- Establish reference data set for comparing the sensitivity of methods for measuring injuryassociated microRNAs in blood
- Important first steps in the exploration of the utility of circulating microRNAs as biomarkers of drug-induced injury beyond "proof of concept" studies

Thank you

- Abbott
- Actelion
- Allergan
- Amgen
- Astellas
- AstraZeneca
- Bayer Healthcare
- Biologie Servier
- GlaxoSmithKline
- Johnson & Johnson
- Eli Lilly

- Novartis Pharma AG
- Pfizer
- Sanofi-aventis
- Takeda
- Maastricht University, NL
- CDER, FDA
- NCTR, FDA
- NIDDK
- NIEHS
- NIST