DART Drugs in Human Semen

Kary Thompson, Ph.D. Bristol-Myers Squibb

June 8, 2011

ILSI Health and Environmental Sciences Institute

Drugs in Human Semen

•**Goal**: To address recent MHRA and FDA requests for data demonstrating safety of pharmaceuticals regarding male-mediated conceptus exposure, and arrive at an appropriate and data-based use of contraception in clinical trials.

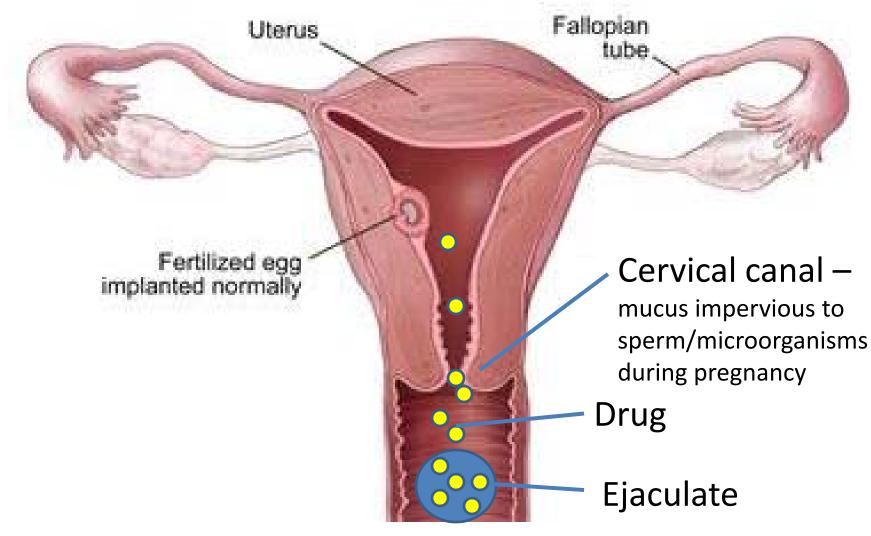
•Steering Team

Graham Bailey	Johnson & Johnson	Jim Kim	HESI
Kimberly Benson	U.S. FDA	Larry Leshin	U.S. FDA
Bruce Beyer	sanofi-aventis	Jimmy McBlane	MHRA
Bill Breslin	Lilly	Graeme Moffat	Amgen
Gary Chellman	Charles River Labs	Christine Nguyen	U.S. FDA
Ruediger Cordts	Boehringer-Ingelheim	Anthony Scialli	Tetra Tech Sciences
Liz Davidson	Consultant (MHRA)	George Scott	Amgen
Tony DeLise	sanofi-aventis	Jane Stewart	AstraZeneca
Wafa Harrouk	U.S. FDA	Kary Thompson	Bristol-Myers Squibb
Kok Wah Hew	Takeda	Ulla Wandel-Liminga	Sweden Medical Products Agency
Julia Hui	Celgene	ena mander Linniga	

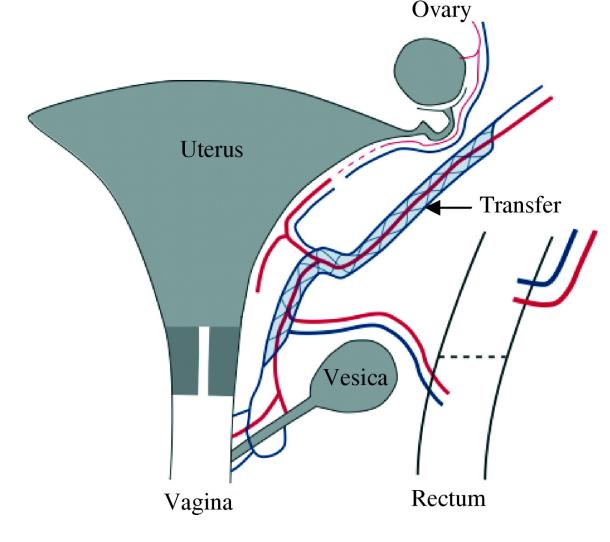
Drugs in Human Semen

- Regional health authority concern for male-mediated embryo/fetal harm following indirect exposure to drugs has lead to requirement for use of barrier protection for men enrolled in clinical trials with pregnant partners.
- Most companies do not routinely assess for semen concentrations of drug.

Three Potential Mechanisms of Embryo/Fetal Exposure Considered


 Vaginal absorption of drug into maternal circulation and subsequent distribution to conceptus – likely most relevant

When requested by regional healthy authorities, using "worst case" assumptions, potential embryo/fetal risk based on known male systemic exposures is modeled. In this approach, only extremely potent teratogens could be a concern.


Diffusion of drug from semen and across cervical barrier

ILSI Health and Environmental Sciences Institute

Model of counter-current transfer of heat or a substance between vaginal vein blood and uterine arterial blood

Einer-Jensen N , Hunter R 2005;129:9-18 Published by **Bio**Scientifica

Drugs in Semen

Experimental Approaches:

- 1) Vaginal dosing of pregnant **cynomolgus monkeys** with assessment of drug in maternal and fetal plasma.
- 2) Thalidomide experiments in pregnant **rabbits** comparing intra-vaginal and oral routes.
- Use of vital dyes (e.g. trypan blue) placed into vagina of pregnant rats followed by time course evaluation of dye migration in dams.
- 4) Imaging studies in pregnant mice

Cynomolgus Monkey Study

- Bristol-Myers Squibb
- Amgen
- Charles River Labs
- Objectives:
 - Determine if traditional assumptions and calculations presently used are sufficient to predict potential male-mediated embryo/fetal harm

Cynomolgus Monkey Study

Study Design

- 3 pregnant cynomolgus monkeys (GD 60/70)
- Given 1 mL of 0.75% metronidazole gel vaginally and monitored for leakage (minimal to none)
- Timed cesarean-section 7 hours after dose for collection of maternal and fetal blood samples and amniotic fluid
- Plasma and amniotic fluid samples analyzed for parent and metabolite (MS/MS)

Cynomolgus Monkey Study: Metronidazole Concentrations

Dam ID	Gestation Day	Maternal Plasma (ng/mL)	Fetal Plasma (ng/mL)	Amniotic Fluid (ng/mL)
1501	GD 70	94.4	105	145
Maternal/fetal ratio		0.9x		
1502	GD 60	756	735	649
Maternal/fetal ratio		1.0x		
1503	GD 70	494	539	817
Maternal/fetal ratio		0.9x		

Cynomolgus Monkey Study: [Hydroxymetronidazole]

Dam ID	Gestation Day	Maternal Plasma (ng/mL)	Fetal Plasma (ng/mL)	Amniotic Fluid (ng/mL)
1501	GD 70	3.66	4.17	2.01
Parent/metabolite ratio		26x	25x	72x
1502	GD 60	26.5	21.1	8.69
Parent/metabolite ratio		29x	31x	75x
1503	GD 70	19.6	21.3	13.4
Parent/metabolite ratio		25x	26x	61x

Cynomolgus Monkey Study: Conclusions

- Maternal systemic exposure to metronidazole is variable following vaginal dosing
- Fetal exposure was equivalent to maternal systemic exposure for parent and metabolite on GD 60 and 70
- Supports that traditional modeling of fetal exposure to drug in semen would be sufficiently conservative to predict potential fetal risk

PK Pregnant Rabbit Study Thalidomide

- Celgene Corp.
- Objective
 - To compare embryonic concentrations of thalidomide following maternal oral or vaginal administration in rabbits

PK Pregnant Rabbit Study Study Design

- Oral dosages:
 - 20 mg/kg/day (NOAEL in previous rabbit EFD study)
 - 180 mg/kg/day (malformations seen in previous study)
- Intravaginal (IVg) dosages:
 - 2, 20, and 180 mg/kg/day
- 8 mated rabbits/group (N=2/time point) dosed from GD 7-11
- Sample collection at 1, 3, 6, and 24 hours postdose on GD11 for assay of thalidomide concentration in:
 - Maternal plasma samples
 - Yolk sac cavity (YSC) fluid from each implant (analyzed individually)
 - Embryos (pooled by litter prior to analysis)

PK Pregnant Rabbit Study -Preliminary Outcomes

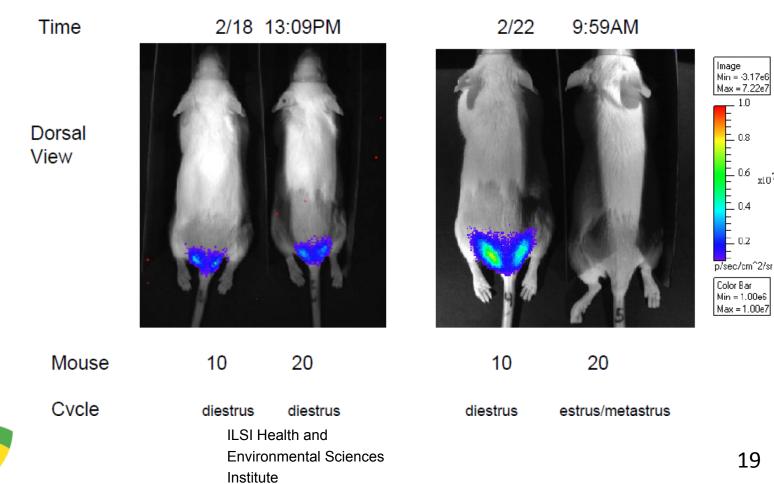
- Exposures were more variable following intravaginal dosing as compared to oral dosing
- Maternal plasma, YSC fluid, and embryonic exposures (AUC) were lower following IVg administration as compared to oral administration
- No meaningful difference in YSC fluid/maternal plasma AUC ratio between these routes
- Conclusion: There was no difference in uptake of thalidomide into the intrauterine compartment following oral and intravaginal routes of administration.

Pregnant Rat Study using Vital Dyes

- Johnson & Johnson
- Objective: Visually evaluate dye distribution when administered intravaginally to pregnant rats
- Study Design
 - Dye to be administered on GD12
 - Use dyes with various sizes and polarity
 - Animals to be sacrifice at 0.25, 0.5, 1, 2, and 4 h
- Study in progress

Transgenic Pregnant Mouse Imaging Study

- sanofi aventis
- Objective:
 - Visualize potential embryo/fetus exposure to compounds via intravaginal route using optical imaging model


Transgenic Pregnant Mouse Imaging Study

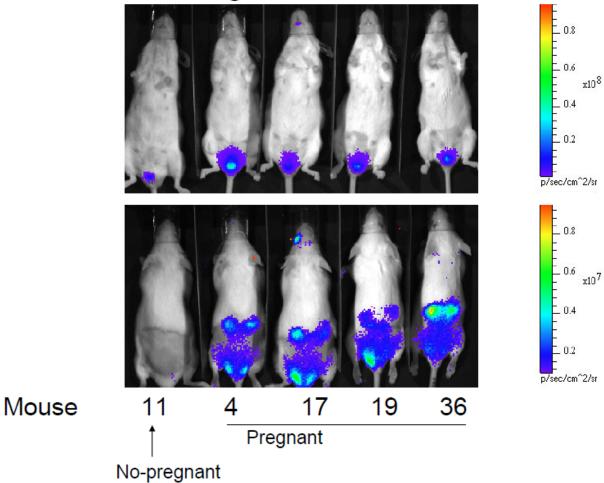
- Study Design
 - Exposure at different stages of estrus cycle and during pregnancy
 - Fluorescence imaging and *ex vivo* imaging
 - 13 β-actin-luciferase female transgenic mice
 - D-luciferin substrate dosed intravaginally (20 ul of 0.5 mg/kg)
 - Imaged with IVIS-100 between 1 to 10 min

Imaging Study Results

Mouse 10, 20 imaged at different estrus stage

Image

1.0


0.8

_ 0.Z

 $x10^{7}$

Imaging Study Results

Pregnant mice: GT8

Transgenic Pregnant Mouse Imaging Study - Topline Results

1. Mice in diestrus and proestrus showed imaging signal

- 2. Mice in estrus/metestrus did not show any imaging signal
- 3. Pregnant mice indeed showed the imaging signal

Drugs in Semen WG: Next Steps

- Complete vital dye study
- Define next steps for imaging study
- Symposium at Teratology Society June 29, 2011
- Publish Results

Acknowledgements

- BMS
 - Mary Ellen McNerney
- CRL
 - Gary Chellman
 - Deanna Newcomb
- Celgene
 - Julia Hui
 - Matthew Hoffman
 - Gondi Kumar
 - Yongkai Sun

ILSI Health and Environmental Sciences Institute

- Amgen
 - Graeme Moffat
 - George Scott
 - J. Zalikowski
- sanofi adventis
 - Tony DeLise
- Johnson & Johnson
 - Graham Bailey