

HESI SCIENTIFIC MAPPING

Nancy G. Doerrer, MS
HESI Associate Director
Scientific Program Stewardship

12 May 2010
AOM Business Meeting
HESI Annual Meeting
Reston, VA

and Education

2005

Communica-

Assessment/

Regulation:

Data Quality and

Collection

Bioaccumulation of

Chemicals

in in vitro

Genetox

2005

Testing

2010-2020 HESI COMBINED CHALLENGES MAP

H E S I_®

Animal use and welfare

Vaccine development, use, and safety

Genomics

Relative

impact

Human health: scientific evaluation of sensitive populations

Sustainability

Stem cell technology

Food safety

Communication and perception of risk versus benefit

Improved risk assessment through biomonitoring and epidemiology

Risk / benefit: regulation of chemicals in commerce

Translational biomarkers

Risk assessment of sensitive / vulnerable populations

Environmental quality

Emerging contaminants

Safety of genetically modified organisms and foods

Regulatory framework for new methods

Computational tools / toxicology

Use of science in setting public policy

"Omics" in risk assessment

Risk assessment of co-exposures

Nanomaterials / nanotechnology

Paradigm shifts in risk assessment / life cycle assessment

Stem cell therapy

Individual susceptibility

Improved testing and assessment strategies

Regulatory framework for carcinogenicity testing

Alternatives to animal models

Epigenetics in risk assessment

Exposure-based risk assessment

Improved biomonitoring through biomarkers

Time: immediate (2010) to long-term (2020)

2009 Scientific Mapping Initiative

H E S I

Purpose:

- To identify health and environmental issues of scientific, regulatory, and societal importance during the next decade.
- To focus on and predict issues likely to be central to the strategic agendas of individual companies and regulatory authorities in the developed world.
- To directly contribute to HESI's strategic planning, but also to develop objectives that could be relevant for other institutions and organizations.

2009 Scientific Mapping Initiative

Not in the scope of this initiative:

Efforts to address, advocate, or manage the prioritized issues.

2009 Scientific Mapping Initiative

Staged initiative:

- 1) January 28-29, 2009, mapping meeting in Hamamatsu, Japan
- 2) July 28-29, 2009, mapping meeting outside of Washington, DC

January 28-29, 2009, HESI Scientific Mapping Meeting

ACT CITY Hamamatsu Congress Center, Shizuoka, Japan

Japan Mapping Meeting Steering Team

- Dr. Marc Bonnefoi (sanofi-aventis)
- Dr. Samuel M. Cohen (University of Nebraska Medical Center)
- Ms. Nancy Doerrer (HESI)
- Dr. Shoji Fukushima (Japan Bioassay Research Center)
- Dr. Ronald Hines (Medical College of Wisconsin)
- Dr. Michael Holsapple (HESI)
- Dr. Toshihisa Ishikawa (Tokyo Institute of Technology / RIKEN)
- Dr. Sunao Manabe (Daiichi-Sankyo)
- Ms. Ayako Takei (ICaRuS Japan)
- Dr. Hiroyuki Tsuda (Nagoya City University Graduate School)

Japan Mapping Meeting: Main Objectives

- Develop and secure agreement on a list of key issues (scientific, regulatory, and societal challenges) to be included in the July 2009 HESI Scientific Mapping Meeting in the US
- Introduce the HESI Scientific Mapping process to the scientific community in Japan

Japan Mapping Meeting: Pre-Meeting Survey

- Survey (in Japanese) distributed in fall of 2008 to > 140 HESI key contacts and stakeholders in Japan
- 40 respondents
- 103 topics identified

Japan Mapping Meeting: January 28-29, 2009

- H E S I®
 - 27 Participants (64% public, 36% industry)
 - Plenary sessions and concurrent breakout groups (objective: to foster clustering and prioritization of topics)

CONCLUSIONS:

High priority:

- Stem cell research and testing
- ❖Nanomaterial safety
- ❖ Reevaluation of carcinogenicity testing/assessment

Medium priority:

- **❖GMOs**
- Training of regulatory staff in toxicity evaluation
- Exposures to multiple chemicals

July 28-29, 2009, HESI Scientific Mapping Meeting

Hyatt Regency Reston Hotel Reston, VA, USA

PLANNING COMMITTEE

CO-CHAIRS:

Dr. Marc Bonnefoi (sanofi-aventis)Prof. Alan Boobis (Imperial College London)

Dr. Scott Belanger (Procter & Gamble Company)

Dr. Henry Chin (Coca-Cola Company)

Dr. Samuel Cohen (University of Nebraska Medical Center)

Dr. Dennis Devlin (ExxonMobil Biomedical Sciences)

Ms. Nancy Doerrer (HESI)

Dr. Jay Goodman (Michigan

State University)

Dr. Ernie Harpur (sanofiaventis)

Dr. Ronald Hines (Medical College of Wisconsin)

Dr. Michael Holsapple (HESI)

Dr. Lewis Smith (Syngenta Ltd)

Dr. James Stevens (Eli Lilly and Company)

Ms. Ayako Takei (ICaRuS)

Dr. Sally Tinkle (NIEHS)

Dr. Jan Willem van der Laan (RIVM)

Dr. Kendall Wallace (University of Minnesota Medical School)

Dr. Hal Zenick (US EPA NHEERL)

July Mapping Meeting: Pre-Meeting Survey

- Online survey distributed in Spring 2009 to HESI contact list (hundreds of industry, government, and academic representatives)
- **❖84 respondents**
- 115 topics identified

Pre-Meeting Streamlining

- Many topics were redundant or overlapped in some significant way
- Before the July meeting: The Planning Committee streamlined the number of topics by clustering into "like" categories

SCIENTIFIC MAPPING MEETING July 28-29, 2009

- 48 Participants (69% public, 31% industry)
- Plenary sessions and concurrent breakout groups
- All high and medium priority issues identified at the Japan meeting were included

Mapping Process

H E S I®

2010-2020 HESI COMBINED CHALLENGES MAP

H E S I

Animal use and welfare

Vaccine development, use, and safety

Genomics

Relative

impact

Human health: scientific evaluation of sensitive populations

Sustainability

Stem cell technology

Food safety

Communication and perception of risk versus benefit

Improved risk assessment through biomonitoring and epidemiology

Risk / benefit: regulation of chemicals in commerce

Translational biomarkers

Risk assessment of sensitive / vulnerable populations

Environmental quality

Emerging contaminants

Safety of genetically modified organisms and foods

Regulatory framework for new methods

Computational tools / toxicology

Use of science in setting public policy

"Omics" in risk assessment

Risk assessment of co-exposures

Nanomaterials / nanotechnology

Paradigm shifts in risk assessment / life cycle assessment

Stem cell therapy

Individual susceptibility

Improved testing and assessment strategies

Regulatory framework for carcinogenicity testing

Alternatives to animal models

Epigenetics in risk assessment

Exposure-based risk assessment

Improved biomonitoring through biomarkers

Time: immediate (2010) to long-term (2020)

HOW DOES THE 2010-2020 HESI COMBINED CHALLENGES MAP COMPARE TO HESI'S FIRST MAP (DEVELOPED IN 2004)?

Differences between 2004 and 2009 HESI Maps: Topic Classification

FIRST MAP:

Topics were identified by geometric shape:

SECOND (2009) MAP:

Because most topics could be characterized by more than one of the above classifications, a decision was made by to remove the designations.

2010-2020 HESI COMBINED CHALLENGES MAP

Improved testing and assessment strategies

Regulatory framework for carcinogenicity testing

Alternatives to animal models

Epigenetics in risk assessment

Exposure-based risk assessment

Improved biomonitoring through biomarkers

Differences between 2004 and 2009 HESI Maps: Timeline

FIRST MAP:

Topics were arranged on a vertical timeline from 2005-2015.

SECOND (2009) MAP:

Topics are arranged along a continuum (the "x" axis) according to when HESI might reasonably contribute to the resolution of each issue [i.e., immediate, short-term (1-2 years), medium-term (2-5 years), and long-term (5-10 years)].

Timeframe = 2010 to 2020

2010-2020 HESI COMBINED CHALLENGES MAP

Regulatory framework for new assessment methods

Computational tools / toxicology

Use of science in setting public policy

"Omics" in risk assessment

Risk assessment of co-exposures

Nanomaterials / nanotechnology

Paradium shifts in risk assessment / life cycle assessment

Stem cell therapy

Individual susceptibility Improved testing and strategies

Regulatory framework for carcinogenicity testing

Alternatives to animal models

Epigenetics in risk assessment

Exposure-based risk assessment

Improved biomonitoring through biomarkers

Differences between 2004 and 2009 HESI Maps:

Priority / Impact

FIRST MAP:

Priority was characterized by the thickness of the shapes (i.e., the thicker the shape, the higher the priority).

SECOND (2009) MAP:

Topics are placed strategically on the map to indicate "relative impact" (the "y" axis), which is a qualitative measure of importance among the high priority topics.

Updated Spring 2008

2015

2010

2009

2008

Evaluating

Environ-

mental

Toxicology

(including

Ecotoxico-

genomics)

HESI Combined Ch

Conserva-

tive Default

Children's

Sensitive

Health

Privacy

Populations:

Information

Predi

Idios cratic

Transit

2010-2020 HESI COMBINED CHALLENGES MAP

Improved testing and

Regulatory framework

Alternatives to animal

Epigenetics in risk

Exposure-based risk

through biomarkers

assessment

assessment

biomonitoring

Improved

for carcinogenicity

assessment

strategies

testina

models

Each axis appearing on the 2010-2020 HESI Combined Challenges Map is a continuum. All issues on the map are of high importance/impact based on prioritization by the participants in the 2009 HESI mapping exercise. "Relative impact" is a qualitative measure of importance among high priority topics. The location of issues along the "time" continuum is an approximation of when the topic is likely to become a major issue in the timeframe from 2010 to 2020.

Differences between 2004 and 2009 HESI Maps: <u>Topics</u>

- ❖ Very few of the 2004 challenges were dropped from the 2009 map; some topics have been re-framed (e.g., children's health → sensitive/vulnerable populations).
- ❖ Some topics appearing on the 2004 map but not on the 2009 map already are under investigation, and progress toward resolution is underway (e.g., a tiered approach to assessing bioaccumulation of chemicals).
- Some issues are new to the 2009 map (e.g., animal use and welfare).

Publication

A manuscript describing the process, value, and outcome of the 2009 HESI Scientific Mapping initiative has been submitted for publication in *Critical Reviews in Toxicology*.

[Also see: Smith et al. (2008). Predicting future human and environmental health challenges: the Health and Environmental Sciences Institute's Scientific Mapping Exercise. *Crit Rev Toxicol* 38, 817-845.]

How Can HESI Use the New Combined Challenges Map?

- To encourage submission of proposals to HESI on areas of high priority on the map.
- To provide guidance on next steps for existing projects in the HESI scientific portfolio.
- As a tool for identifying common goals and objectives with partner organizations.