

In vivo in vitro associations of oxidative stress-induced genotoxicity of nanomaterials

Steffen Loft, Dept.of Environmental Health, University of Copenhagen, Denmark

HESI-ILSI Webinar February 9, 2009

Danish Agency for Science Technology and Innovation Ministry of Science Technology and Innovation

Airborne or suspended nanoparticles are considered to pose a potential hazard

Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

Biokinetics of NP

Günter Oberdörster,¹ Eva Oberdörster,² and Jan Oberdörster³

UNIVERSITY OF COPENHAGEN

Nanotoxicology

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t716100760

Genotoxicity of engineered nanomaterials: A critical review Laetitia Gonzalez ^a; Dominique Lison ^b; Micheline Kirsch-Volders ^a

Laetitia Gonzalez ^a; Dominique Lison ^b; Micheline Kirsch-Volders ^a ^a Laboratory of Cell Genetics, Department of Biology, Vrije Universiteit Brussel, Brussels ^b Industrial Toxicology and Occupational Medicine Unit, Université catholique de Louvain, Brussels, Belgium

First Published on: 20 November 2008

Table II (Continued)

_

Np Type	Route of exposure	Animal	Cell Type	Test	Top dose	Concentration/dose	Result	Reference
In vivo studies Carbon								
MWCNT (11.3 nm/ 0.7µm)	Intratracheal instillation	Female Wistar rats	AT-II cells	CBMN	Data on inflam- mation	0.5 and 2 mg/rat-72 h	+ (2 mg/ rat)	(Muller et al. 2008 [4]
Iron								
Magnetoliposomes 14 nm?	Endovenous injection	Female Swiss mice	Anucleated polychromatophylic erythrocytes Female Swiss mice	MN	/?	100 μ l of 1,8 × 10 ¹⁵ particles/ml (12, 24, 48 h)	(+) 24 h	(Garcia et al. 2002)[19]
Polaspartic acid coated Fe								
8.5 nm	Endovenous injection	Female Swiss mice	Anucleated polychromatophylic erythrocytes	MN		50 µl of 0,6 ×10 ¹⁶ par- ticles/ml		(Sadeghiani et al. 2005)[20]
						1 dav	+	
						7 days	_	
						15 days	_	
						30 days	_	
						50 µl of 1,6 $\times 10^{16}$ par-		
						ticles/ml		
						1 day	+	
						7 days	+	
						15 days	_	
						30 days	_	
Titaniumdioxide								
20 nm (hydrophilic and hydrophobic surface)	Intratracheal instil- lation	Female Wis- tar rats	Lung parenchyma cells	8-oxo- gua		0,15–1,2 mg/ml 90 days	(+)	(Rehn et al. 2003) [21]

Inhalation Toxicology

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713657711

Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats

Yong Soon Kim ^a; Jin Sik Kim ^a; Hyun Sun Cho ^a; Dae Sik Rha ^a; Jae Min Kim ^a; Jung Duck Park ^b; Byung Sun Choi ^b; Ruth Lim ^b; Hee Kyung Chang ^c; Yong Hyun Chung ^d; Il Hoon Kwon ^e; Jayoung Jeong ^e; Beom Seok Han ^e; Il Je Yu ^a

^a Korea Environment & Merchandise Testing Institute, Incheon, Korea ^b College of Medicine, Chung-Ang University, Seoul, Korea ^c Department of Pathology, Kosin University, Busan, Korea ^d Occupational Safety and Health Research Institute, Daejeon, Korea ^e National Institute of Scientific Investigation, Seoul, Korea

Online Publication Date: 01 April 2008

Silver nanoparticles of 60 nm by daily gavage (10 rats in each group):

- vehicle control (10 ml/kg)
- low-dose group (30 mg/kg),
- middle-dose group (300 mg/kg)
- high-dose group (1000 mg/kg).

After 28 days of exposure no effect on

- micronucleated polychromatic erythrocytes (MN PCEs)
- ratio of polychromatic erythrocytes among total erythrocytes

Cardiovascular Effects of Pulmonary Exposure to Single-Wall Carbon Nanotubes

Zheng Li,¹ Tracy Hulderman,¹ Rebecca Salmen,¹ Rebecca Chapman,¹ Stephen S. Leonard,² Shih-Houng Young,² Anna Shvedova,² Michael I. Luster,¹ and Petia P. Simeonova¹

¹Toxicology and Molecular Biology Branch, and ²Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.

Figure 2. Aortic mtDNA damage in C57BL/6 mice exposed to SWCNTs shown as representative gel images of the long (12 kb) and short fragment (0.18 kb) mtDNA amplification products and quantitative analyses of the mtDNA damage (a reduction in the amplification) presented as a fold difference between each SWCNT-treated group and the vehicle-treated group. (*A*) Mice were treated with SWCNTs (0, 10, or 40 μ g) and aortas were collected at 7, 28, and 60 days postexposure. (*B*) Mice were treated with SWCNTs (0, 20, or 40 μ g) or UfCBs (0, 20, or 40 μ g) and aortas were collected 60 days postexposure. The 12 kb mtDNA expression was normalized to 0.18 kb mtDNA expression. Each value represents the mean ± SE of four mice.

Environmental Health Perspectives • VOLUME 115 | NUMBER 3 | March 2007

UNIVERSITY OF COPENHAGEN

Nanoparticles

Carcinogenesis vol.18 no.2 pp.423-430, 1997

Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells

UNIVERSITY OF COPENHAGEN

Lung inflammation after particle administration

Stoeger T, Schmid O, Takenaka S, Schulz H. Inflammatory response to TiO2 and carbonaceous particles scales best with BET surface area. Environ Health Perspect. 2007 Jun;115(6):A290-1

Surface area may be most important

Similar association for lung tumors

Inhalation studies of different particles - Instillation studies

Int. J. Cancer: 110, 3-14 (2004) © 2004 Wiley-Liss, Inc.

Publication of the International Union Against Cancer

MINI REVIEW

INHALED PARTICLES AND LUNG CANCER, PART B: PARADIGMS AND RISK ASSESSMENT

A An

Paul J.A. BORM*, Roel P.F. SCHINS and Catrin ALBRECHT

Increased strand breaks, guanine oxidation and TNF, IL1, 6, 8 mRNA expression (20-500 ug/ml) in cells by NIST 1650 or 2975 diesel or street particles

Similarly increased strand breaks in human lymphocytes (from 20 ug/mL)

Only effect of street particles and not of diesel particles on 8-oxodG in isolated DNA (HPLC-EC)

Dybdahl et al., Mutation Res 2004

Dybdani et al., Mutation Res 2004 Danielsen et al. Particle Fibre Toxicol 2008

Dose response of 8-oxodG in the lung across in vivo studies

Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-InducedDNA DamageFPG sites and strandbreaks in monoclear blood cells

Elvira Vaclavik Bräuner,¹ Lykke Forchhammer,¹ Peter Møller,¹ Jacob Simonsen,¹ Marianne Glasius,^{2*} Peter Wåhlin,² Ole Raaschou-Nielsen,³ and Steffen Loft¹

Environmental Health Perspectives • VOLUME 115 | NUMBER 8 | August 2007

Particle and Fibre Toxicology

Research

Open Access

BioMed Central

Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals

Elvira V Bräuner¹, Peter Møller¹, Lars Barregard², Lars O Dragsted³, Marianne Glasius^{4,5}, Peter Wåhlin⁵, Peter Vinzents^{1,6}, Ole Raaschou-Nielsen⁷ and Steffen Loft^{*1}

Role of TNF and PMN in TNF-/- inhaling diesel particles or carbon black x 4

 Control mice 700 ◆ TNF knock-out mice eve 600 mRNA 500 ې ۲ \$ 300 Relative 200 100 0 CB DEP Air

TNF-signalling and PMN infiltration not required for DNA damage after repeated dosage (Saber et al. Arch Toxicol 2005)

Particle and Fibre Toxicology 2009, 6:2 doi:10.1186/1743-8977-6-2 Particle and Fibre Toxicology

BioMed Central

Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE^{-/-} mice

Nicklas Raun Jacobsen¹, Peter Møller², Keld Alstrup Jensen¹, Ulla Vogel^{1,3,4}, Ole Ladefoged³, Steffen Loft² and Håkan Wallin^{*1}

Compare wild type and ApoE-/- mice for susceptibility (carbon black)

Compare inhalation and instillation for effect (carbon black)

Use instillation to compare a nanoparticle battery

- Carbon black 14 nm
- C₆₀ 0.7 nm
- SWCNT 0.9-1.7 x <1000 nm
- Au 2 nm
- Quantum dots 5 nm

Characterize the aerosol

Figure 2

A) The average number and mass distribution of aerosolized CB during a 1-hour experiment. The mass concentration was calculated assuming spherical particles with a density of 2.1 μ g/ μ m³. Error bars denote the standard deviation of the measured concentrations over the whole test period. B) A conservative model for deposition efficiency for particles in mice based on data from Raabe and co-workers [27]. The crosses plotted for the "Total" deposition efficiency curve indicates the model resolution, which fits the GRIMM SMPS+C and the GRIMM Dustmonitor.

Characterize the suspensions

Number and volume size distribution of the particle suspensions used for instillation determined by DLS anal-

Much stronger inflammatory response to instillation of carbon black (CB 14 nm) 54 μ g in ApoE^{-/-} mice than in C57 mice after both 3 and 24 hr

Table 1: mRNAs of *Mip-2*, *Mcp-1* and *II-6* in lung tissue and cell distribution and protein in BAL fluid 3 and 24 h after instillation of carbon black in C57 and ApoE^{-/-} mice.

		C57	C57	ΑροΕ ^{-/-}	АроЕ-/-
		Control	CB 54 μg	Control	CB 54 μg
3 h		/			
lung tissue	Mip-2	9.6 ± 2.5	20.4 ± 5.9	10.2 ± 3.2	108.1 ± 15.1***
•	Mcp-I	12.1 ± 4.6	20.6 ± 5.4	10.1 ± 1.2	265.5 ± 163.9***
	11-6	4.0 ± 1.9	5.8 ± 2.3	2.1 ± 0.4	31.4 ± 4.8***
BAL	Neutrophils% ^a	3.4 ± 2.4	4.5 ± 0.4	3.7 ± 1.2	13.8 ± 10.9
	Macrophages% ^a	94.5 ± 2.6	93.8 ± 0.4	93.9 ± 2.0	83.1 ± 10.7
	Total BAL cells	55732 ± 14617	73407 ± 9267	83262 ± 4819	49417 ± 7700
	Protein	133.3 ± 21.7	82.4 ± 6.0*	102.5 ± 5.2	39.3 ± 7.3 [∞] *
24 h					
lung tissue	Mið-2	7.8 ± 1.0	82.8 ± 24.8***	5.1 ± 0.5	134.8 ± 33.2***
8	, Мср-I	39.1 ± 10.4	434.1 ± 145.8***	28.3 ± 2.7	1087.0 ± 310.6***
	II-6 [°]	2.1 ± 0.6	20.3 ± 12.3*	1.1 ± 0.1	44.0 ± 13.0***
BAL	Neutrophils% ^a	5.2 ± 1.2	51.0 ± 12.6**	5.3 ± 1.6	75.8 ± 3.4***
	Macrophages% ^a	92.6 ± 2.3	47.9 ± 12.7**	93.6 ± 1.5	22.1 ± 3.7***
	Total BAL cells	49022 ± 3589	98857 ± 11618	65290 ± 5246	78596 ± 21414
	Protein	4.5 ± 3.7	124.7 ± 10.6	110.6 ± 5.7	182.4 ± 7.1***

Much stronger inflammatory response to instillation of carbon black (CB 14 nm) 18 or 54 μ g than to inhalation of the same dose in ApoE^{-/-} mice after 24 hr

Table 2: Expression (mRNA) of *Mip-2*, *Mcp-1* and *II-6* in lung tissue and cell distribution and protein in BAL fluid 24 h after inhalation or instillation of carbon black in ApoE^{-/-} mice.

		Control	Low dose	High dose	significant dose-related differences ^b
Inhalation		HEPA air 1/2–1 1/2 h	CB 60 mg/m³, 1/2 h	CB 60 mg/m ³ , /2 h	
lung tissue	Mip-2	9.9 ± 1.6	11.6 ± 2.9	17.6 ± 3.1	High dose ≈ Low dose
	Mcp-I	44.4 ± 10.5	97.2 ± 24.8*	79.9 ± 18.7	Low dose \approx High dose
	11-6	3.4 ± 0.6	4.3 ± 0.9	3.2 ± 0.5	Low dose \approx High dose
BAL	Neutrophils% ^a	I.I ± 0.4	0.7 ± 0.3	5.6 ± 3.2	High dose ≈ Low dose
	Macrophages% ^a	97.5 ± 0.3	97.9 ± 0.2	92.5 ± 4.1	High dose \approx Low dose
	Total BAL cells	54750 ± 4891	66567 ± 6304	77867 ± 4896	
	Protein	91.2 ± 3.7	108.1 ± 7.5*	118.5 ± 5.5**	High dose \approx Low dose
Instillation		Vehicle control	CB 18 µg	CB 54 µg	
lung tissue	Mip-2	5.1 ± 0.5	37.1 ± 13.4***	134.8 ± 33.2***	High dose>>>Low dose
	Mcp-I	28.3 ± 2.7	511.2 ± 246.7***	1087 ± 310.6***	High dose \approx Low dose
	11-6	1.1 ± 0.1	14.3 ± 7.2***	44.0 ± 13.0***	High dose>Low dose
BAL	Neutrophils% ^a	5.3 ± 1.6	41.3 ± 10.2*	75.8 ± 3.4***	High dose ≈ Low dose
	Macrophages% ^a	93.6 ± 1.5	57.7 ± 10.2***	22.1 ± 3.7***	High dose>>>Low dose
	Total BAL cells	65290 ± 5246	88173 ± 19861	78596 ± 21414	-
	Protein	110.6 ± 5.7	150.4 ± 7.7***	182.4 ± 7.1***	High dose>Low dose

Inflammation and DNA damage 3 hr after instillation of 54 μ g nanoparticles of gold (Au, C60, SWCNT, carbon black CB 14 nm) or to quantum dots (QD620, QD621) in Apo^{-/-} mice

Animal experiments show increased oxidative stress, DNA damage and gene expression in colon, liver and lungs after low oral doses of diesel particles in feed or by gavage and without signs of inflammation or mutagenicity (after 21 days)

Carcinogenesis vol.24 no.11 pp.1759–1766, 2003 DOI: 10.1093/carcin/bgg147

DNA adduct formation and oxidative stress in colon and liver of Big Blue[®] rats after dietary exposure to diesel particles

Marianne Dybdahl^{1,6}, Lotte Risom², Peter Møller², Herman Autrup³, Håkan Wallin¹, Ulla Vogel¹, Jette Bornholdt¹, Bahram Daneshvar⁴, Lars Ove Dragsted⁴, Allan Weimann⁵, Henrik Enghusen Poulsen⁵ and Steffen Loft²

Fundamental and Molecular Mechanisms of Mutagenesis

DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue[®] rats

Anne K. Müller^{a,*}, E. Olatunde Farombi^b, Peter Møller^c, Herman N. Autrup^d, Ulla Vogel^e, Håkan Wallin^e, Lars O. Dragsted^a, Steffen Loft^c, Mona-Lise Binderup^a

Available online at www.sciencedirect.com

Mutation Research 637 (2008) 49–55

ScienceDirect

Fundamental and Molecular Mechanisms of Mutagenesis

www.elsevier.com/locate/molmut Community address: www.elsevier.com/locate/mutres

DNA damage in rats after a single oral exposure to diesel exhaust particles

Pernille Høgh Danielsen^a, Lotte Risom^a, Håkan Wallin^b, Herman Autrup^c, Ulla Vogel^b, Steffen Loft^a, Peter Møller^{a,*}

UNIVERSITY OF COPENHAGEN

ehponline.org

doi: 10.1289/ehp.11922 (available at http://dx.doi.org/) Online 12 November 2008

Janne K. Folkmann, Lotte Risom, Nicklas R. Jacobsen,

Håkan Wallin, Steffen Loft, and Peter Møller

Oxidatively Damaged DNA in Rats Exposed by Oral Gavage to C₆₀ Fullerenes and Single-walled Carbon Nanotubes

Groups of 8-10 rats received by gastric intubations

C60 Fullerenes

Single wall carbon nanotubes

HEALTH

PERSPECTIVES

0, 0,064 or 0,64 mg/kg

In saline or corn oil

24 hr after oral exposure to C60 or SWCNT

Difference in hepatic 8-oxodG (per 10⁵ dG) compared to untreated group

Steffen Loft

Danielsen et al. Mutation Res 2008; Folkmann et al. EHP 2009

UNIVERSITY OF COPENHAGEN

Environmental and Molecular Mutagenesis 48:451-461 (2007)

Environmental and Molecular Mutagenesis 49:476–487 (2008)

Research Article

Increased Mutant Frequency by Carbon Black, but not Quartz, in the *lac*Z and *cll* Transgenes of MutaTMMouse Lung Epithelial Cells

Nicklas Raun Jacobsen,¹ Anne Thoustrup Saber,¹ Paul White,² Peter Møller,³ Giulio Pojana,⁴ Ulla Vogel,¹ Steffen Loft,³ John Gingerich,² Lynda Soper,² George R. Douglas,² and Håkan Wallin¹* Research Article

Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single-Walled Carbon Nanotubes and C₆₀ Fullerenes in the FE1-MutaTMMouse Lung Epithelial Cells

Nicklas Raun Jacobsen,¹ Giulio Pojana,² Paul White,³ Peter Møller,⁴ Corey Alexander Cohn,¹ Karen Smith Korsholm,⁵ Ulla Vogel,¹ Antonio Marcomini,² Steffen Loft,⁴ and Håkan Wallin¹*

Diesel: Environ Mol Mutagen 49:476-87, 2008

UNIVERSITY OF COPENHAGEN

Environmental and Molecular Mutagenesis 48:451–461 (2007)

Environmental and Molecular Mutagenesis 49:476-487 (2008)

Research Article

Carbon black

Diesel

Quartz

Increased Mutant Frequency by Carbon Black, but not Quartz, in the lacZ and cll Transgenes of MutaTMMouse Lung Epithelial Cells

Nicklas Raun Jacobsen,¹ Anne Thoustrup Saber,¹ Paul White,² Peter Møller,³ Giulio Pojana,⁴ Ulla Vogel,¹ Steffen Loft,³ John Gingerich,² Lynda Soper,² George R. Douglas,² and Håkan Wallin¹

Research Article

Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single-Walled Carbon Nanotubes and C₆₀ Fullerenes in the FE1-MutaTMMouse Lung Epithelial Cells

Nicklas Raun Jacobsen,¹ Giulio Pojana,² Paul White,³ Peter Møller,⁴ Corey Alexander Cohn,¹ Karen Smith Korsholm,⁵ Ulla Vogel, Antonio Marcomini,² Steffen Loft,⁴ and Håkan Wallin

SWCNanotubes

Blank

Fullerenes C60

2.78 8.33 25 100 2.78 8.33 25 100 0µg/ml

Particles	ROS	IL1/6/8;TNF	SB	FPG	CII mutation
Diesel SRM1650/2975	+	++	++	++	++
Wood smoke	-	++	+++	++++	nd
Diesel extract	?	+	++++	+++	nd
Wood smoke extract	?	+	+++++	+++	nd
Carbon black	+++	+	++	++	++
C ₆₀ fullerenes	+/-	nd	+	+	-
Carbon nanotubes	++/-	nd	+	+	-
Quartz	+	++	-	-	-

Danielsen et al. Particle Fibre Toxicol 2008; Dybdahl et al. 2004; Jacobsen et al. Environ Mol Mutagen 2007+2008, Mutation Res 2007; Kocbach et al. Toxicology 2008, Toxicol Appl Pharmacol 2008

2

Summary of effects of particles in cell culture and in vivo in apoE-/- mice and rats

			- in vitro				— in viv	/ 0
Particles	ROS	IL1-8 TNF	SB	FPG	CII mu- tation	MCP -1	SB 8-oxo BAL oral/ir	8-oxodG oral/inhal.
Diesel	++	++	++	++	++	++	++	++/+-
Carbon black	+++	+	++	++	++	++	++	/-
C ₆₀ fullerenes	+/-		+	+	-	+	-	+/
SWCNT	++/-		+	+	-	+++	+	+/
Quartz	+	++	-	-	-	(+++)	(++)	
QDots		highly	cytoxic			+++	+++	

Danielsen et al. Particle Fibre Toxicol 2008; Dybdahl et al. 2004; Jacobsen et al. Environ Mol Mutagen 2007+2008, Mutation Res 2007, Particle Fibre Toxicol 2009; (Knaapen et al. Carcinogenesis 2002); Folkmann et al EHP 2009

Conclusions: In vivo vitro genotoxicity of nanomaterials

Dosimetry and biokinetics more required in vivo

Route of exposure

- ✓ Inhalation or instillation suspensions or aerosols
- ✓ Oral
- ✓ Injection

Target tissues could include

- √Lung
- ✓Liver
- ✓ Bone marrow
- ✓ Germ cells

Endpoints include

- ✓ Comet assay strand breaks and base oxidation
- ✓ DNA base oxidation by chromatography
- ✓ Micronuclei
- ✓ Mutations

Reasonable in vivo in vitro correlation for oxidative damage to DNA, mutations and inflammation with respect NP

No direct data on issues of size, charge etc. and genotoxicity of NP in vivo

