

David Brewster, Ph.D., D.A.B.T.

HESI Annual Meeting

May 2010

HESI Committee on

Preclinical Safety Assessment and Imaging

Environmental Hazard Identification

H E S I®

Background

- Significant advances have been made with *in vivo* imaging modalities in recent years
 - □ scaling- i.e. man to mouse
 - Resolution
 - □ Numbers of endpoints
- Advances have yet to significantly impact current paradigm of preclinical safety assessment leadership position
 - Opportunities exist to engage these technologies to influence their development in ways that can be applied to and improve the way we do preclinical safety assessment and environmental hazard identification.

- □ "improve" defined as
 - more predictive
 - more efficient
 - more translational

Opportunities...

- 1. ...Utilization of *in vivo* imaging to address some of the challenges faced in preclinical development
- 2. ...Development of *in vivo* imaging as an endpoint in safety studies to better understand and assess the safety of a potential therapeutic
- 3. ...Advancements in the science of *in vivo* imaging to enhance understanding of the effects of potential therapeutics on organ function

Challenge...

Imaging historically used to monitor restoration of normalcy

- Efficacy models
- Examination of return to normal function or normal morphology
- □ Assess ability of drug to overcome insult

Use of imaging as safety marker? Future?...

- Assess drug effects on safety parameters
- □ Image pathology real time
- \square Look at loss of function in normal, healthy animal given drug
 - Understand mechanism
 - Assess toxicity

Current Toxicology Designs

- Drugs given to young healthy animals
- Dose, slice and dice designs with old technologies
- Single end point at end of treatment with objective of assessing toxicity

"...treatment related but of

unknown toxicological relevance"

Traditional safety studies

Endpoints of organ toxicity

- Clinical Observations
- Exposure
- Morphological change
- Biomarkers

Snap shot at end of study

- Sometimes difficult/impossible to understand what occurred over length of study
- Dose limitations set upon parameters which may or may not be important/relevant

Technology Today...

- Technology continues to advance, throughput increased
 - Able to image up to 12 rodents simultaneously
- Numerous modalities available
 - 🗆 MRI
 - 🗆 PET
 - 🗆 CT

Optical

🗌 Ultrasound

Many different endpoints

- □ Anatomy
- □ Biochemistry
- Surface Receptors/Alterations
- □ Macrophage infiltration
- □ Cardiac function
- □ Glucose utilization

.....

Examples of Functional Imaging

- **Cardiac Function** Ultrasound, CT, MR
- **Quantification of chemical species in selected tissue** Localized MR spectroscopy
- **Renal flow -** CT
- Intermediary metabolism CT PET / fluorinated labels
- **Brain (neurotransmitters) -** CT PET / carbon labels

As we discuss further...

Critical to Remember...

- Functional Imaging used in synergy with pathology
- Challenges to use of imaging (cost, timing, availability)
- Interesting questions will arise for which we may have no answer or a myriad of opinions about an answer

These questions and more...

Considered by small team of scientists (industry, academic, and gov't) – need for broader forum for consensus and research identified.

HESI contacted as part of 'Resources at Initiation' Process in June 2009 to help meet this need.

■ Workshop held at HESI in December 2009.

Interest in technical area so high that self-funding Committee initiated in January 2010.

Committee Participants 2010

- AstraZeneca
- Bayer HealthCare
- Bristol-Myers Squibb
- Boehringer Ingelheim
- Charles River Laboratories
- Covance
- GE Healthcare
- GlaxoSmithKline
- Hoffman-La Roche

- Merck
- Pfizer
- sanofi-aventis
- Quintiles
- Duke University Center for In Vivo Microscopy
- FDA
- EPA
- NIH

2010-2020 HESI COMBINED CHALLENGES MAP

		1		
	Animal use and welfare	Improved risk assessment through biomonitoring and	Regulatory framework for new methods	Improved testing and assessment strategies
	Vaccine development, use, and safety	epidemiology	Computational tools /	Regulatory framework for
	Genomics	chemicals in commerce	losicology	Alternatives to enimal
	Human health: scientific evaluation of sensitive	Translational biomarkers	public policy	models
	populations	Risk assessment of sensitive / vulnerable	"Omics" in risk assessment	Epigenetics in risk assessment
	Sustainability	populations	Risk assessment of co- exposures	Exposure-based risk
Relative impact	Stem cell technology	Environmental quality	Nanomaterials /	assessment
Inipuor	Food safety	Emerging contaminants	nanotechnology	Improved biomonitoring through biomarkers
	Communication and	Safety of genetically	Paradigm shifts in risk	Ŭ
	perception of risk versus	modified organisms and	assessment / life cycle	
	benefit	toods	assessment	
			Stem cell therapy	
			Individual susceptibility	
		:		
	Time: immediate (2010) to long-term (2020)			

Committee Mission

Identify and pursue opportunities to efficiently and beneficially integrate imaging approaches into current safety assessment paradigms for drugs and/or hazard assessment approaches for chemicals.

Committee Focus and Workstreams

Several Potential Areas for Project Work were Identified

- Developmental and reproductive toxicity
- Cardiovascular function in repeat-dose studies
- Carcinogenicity (tumor number, onset, growth rates, etc.)
- Developmental neurotoxicity

Anticipated Deliverables

- Survey on current practice
- Data and experience sharing on best-practices
- Novel experimental work conducted in collaboration with Duke CIVM

 data used as basis for discussion on application to 'routine' safety
 evaluation;
- Possible FDA-NIH grant (research, committee discussion on data applications, etc.)

In Summary....

...Utilization of *in vivo* imaging will help to address some of the challenges faced in preclinical development

- □ Mechanism of effect
- \Box Onset and progression of reversal of effect or pathology real time

In Development of *in vivo* imaging as an endpoint in safety studies may help to better understand and assess the safety of a potential therapeutic

Retrospective, based upon target, indication, critical physiological functions

…Enhancement of *in vivo* imaging will lead to better understanding of effects of potential therapeutics on organ function

Heart, bone, kidney, Others?.

Today's Speakers

 Dr. Allan Johnson – Duke, CIVM, Use of Imaging for Small Animals
 Dr. William Slikker, Director, NCTR – Imaging as a Resource for Drug Safety Evaluation