Utility of "Sliding Window" FASTA in Predicting Cross-Reactivity with Allergenic Proteins

> Bob Cressman Pioneer Crop Genetics

The issue...

■ FAO/WHO 2001 –

"Step 2: prepare a complete set of 80-amino acid length sequences derived from the expressed protein..."

"Cross-reactivity between the expressed protein and a known allergen (as can be found in the protein databases) has to be considered when there is:

1) more than 35 % identity in the amino acid sequence of the expressed protein (i.e. without the leader sequence, if any), using a window of 80 amino acids and a suitable gap penalty"

The miracles of science

October 24th, 2007

FASTA Analysis

Asked to look at prevalence of potential cross reactive ORFs in maize genomic sequences...
 identified by FGENESH software

No known similarities to public proteins

1270 total ORFs (1102 ORFS > 80 residues; amenable to FASTA analysis)

Used Perl scripts:
 Break each protein into 80 residue sub-peptides

 Run FASTA33 on each peptide against FARRP6 database

 Collate and screen FASTA outputs for >35% over 80 aa

Over 1.9 million alignments processed

Results

Seventy three ORFs were above the FAO/WHO FASTA threshold

Represented 6.7% of the total

SWISS-PROT index – 0.4% (Stadler and Stadler, 2003)

FASTA algorithm (Pearson and Lipman, 1988)

- Local alignment between query and database sequences
- Four steps*
 - Finds all sets of matches k residues or greater (default k for proteins = 2) between query and all database proteins
 - All matches within 16 aa are joined; regions with highest density of matches are identified
 - These regions scored with substitution matrix (default matrix for proteins = BLOSUM50). Highest scoring regions identified, joined using gap creation/extension penalties, and ranked
 - Highest scoring database matches subjected to Smith Waterman local alignment
- More sensitive, slower then BLAST (FASTA is unfiltered)

*Adapted from Mount, David. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, 2001.

The miracles of science

FASTA Statistics

- FASTA has built in statistical analysis to evaluate the significance of an alignment
 - Uses alignments to generate statistical distribution of alignment scores (score vs. log of sequence length)
 - z score related to degree of deviation from the distribution
 - *E* score reflects probability of observing a greater *z* score within the distribution
 - Higher number higher likelihood that alignment due to "random" alignment
 - Lower number more significant
 - Affected by protein length, database size, FASTA parameters (scoring matrix, gap penalties)
 - Important to be consistent when performing comparisons —same parameters

Conventional FASTA

FASTA <u>already</u> screens across the entire length of the protein

Finds highest scoring region of alignment, assesses degree of significance.

1 MSPQTETKAS VGFKAGVKDY KLTYYTPEYE TLDTDILAAF RVSPQPGVPP 50 51 EEAGAAVAAE SSTGTWTTVW TDGLTNLDRY KGRCYHIEPV AGEENQYICY 100

>>gi|113560|sp|P22284|MPA91_POAPR Pollen allergen KBG 31 (373 aa)
initn: 59 init1: 59 opt: 65 Z-score: 91.0 bits: 23.6 E(): 3.7
Smith-Waterman score: 65; 31.034% identity (58.621% similar) in 58 aa overlap
(8-65:130-187)

TEST P **MSPOTETKASVGFKAGVKDYKLTYYTPEYETLDTDIL** : | | | | : | qi 113 KPAPKVAAYTPAAPAGAAPKATTDEOKLIEKINVGFKAAVAAAAGVPAASKYKTFVATFG TEST_P AAFRVSPQPGVPPEEAGAAVAAESSTGTWTTVWTDGLTNLDRYKGRCYHIEPVAGEENQY qi|113 AASNKAFAEALSTEPKGAAVASSKAVLTSKLDAAYKLAYKSAEGATPEAKYDAYVATLSE

FASTA Comparison

 Decided to repeat analysis of 1102 maize ORFs using "conventional" FASTA

■ Eighteen positives out of 1102 (1.7%)

• Five fold decrease in "positives"

FASTA33 vs. FASTA34

"Discovered" newer version of FASTA

- Change in gap creation penalty from version 33 (-12 to -10)
- Does this make a difference?
- Apparently not...

Decided to use FASTA34 (Version 34t25) for searches

More comparisons...

 Discussion with Andre Silvanovitch, Gary Bannon (Monsanto)

■ Maize ORFs do not represent "real" proteins...

 Andre provided table of 1000 NCBI proteins (907 proteins longer than 80 aa)

Randomly selected

907 Random Proteins - Results

- Forty three positives (4.7%) returned from conventional FASTA searches versus 103 (11.5%) using sliding window search
- E scores for conventional FASTA reflect greater significance (lower scores)
- Independent of FASTA version used (33 vs. 34)

The miracles of science

Other results

Also compared

- 89 random maize proteins
- 97 seed specific maize proteins
- This work recently published:
 - Ladics et al., 2007, Mol. Nutr. Food Res. 51(8):985-998.

Sliding window search result

35.000% identity in 80 aa overlap

Conventional search result

The miracles of science^{*}

False negative screen

- Is conventional FASTA sensitive enough?
- How do we test this?
 - Examined similarities with Bet v 1 pollen allergen family
 - Believed to form basis for the current FASTA criteria

All comparisons generated positives using both methods

	Sliding window			Conventional		
comparison	identity (%)	length	E score	identity (%)	length	E score
Bet v 1 vs Dau c 1	40	80	1.90E-11	38.1	155	1.90E-20
Dau c 1 vs Bet v 1	40.7	81	4.30E-10	38.1	155	2.10E-19
Bet v 1 vs Api g 1	45	80	2.10E-12	41.9	155	3.60E-23
Api g 1 vs Bet v 1	45	80	2.30E-12	41.9	155	1.70E-24
Bet v 1 vs Mal d 1	61.3	80	1.60E-19	56	159	2.70E-34
Mal d 1 vs Bet v 1	61.3	80	6.30E-24	56	159	8.50E-33
Bet v 1 vs Pyr c 1	62.5	80	3.00E-19	57.5	160	3.70E-35
Pyrc1vsBetv1	62.5	80	6.80E-24	57.5	160	5.10E-37
Bet v 1 vs Pru a 1	62.5	80	5.30E-20	59.4	160	1.80E-38
Pru a 1 vs Bet v 1	62.5	80	1.90E-23	59.4	160	2.50E-43

The miracles of science

Recent work...

Decided to compare positives obtained in different crops

- Lettuce (185 proteins)
- Spinach (200 proteins)
- Beets (224 proteins)
- Barley (200 proteins)
- Soy (200 proteins)
- Maize again (200 proteins)

Removed all proteins < 80 aa, all hypothetical, unnamed, putative, RefSeq accessions, then randomly selected sequences for analysis</p>

Ran both sliding window and conventional searches...

Results

October 24th, 2007

A closer look

- Out of 1209 proteins (recent work):
 - 3 proteins were identified as positive by conventional FASTA; missed by sliding window search
 - Example:

The miracles of science

- gi | 109238657 | cystatin Hv-CPI11 [Hordeum vulgare subsp. vulgare]
- Both techniques identify phytocystatin [Actinidia deliciosa] (GI#40807635) as top scoring alignment:

conventional FASTA		sliding window FASTA				
identity	length	E score		identity	length	E score
35.052	97	1.10E-06		36.765	68	1.60E-08

Shorter length causes alignment to fall below threshold

A closer look (cont.)

- A total of 35 accessions were classified as positives in the sliding window searches, but not returned using conventional FASTA
- Retrieved corresponding conventional alignments
- Nine of the proteins had no corresponding alignment in the conventional FASTA search
 - Less significant (*E* scores range from 0.5 to 6.9)
 - "True" false positives?
- Two alignments were to the same allergen sequence, but to different regions:

Conventional FASTA allergen region Sliding window FASTA allergen region

Residues 59-167

Residues 271-336

A closer look (cont.)

When the remaining 24 were compared to corresponding conventional FASTA alignments:

 All but one alignment are at or near the threshold of identity (35-40% identity)

■ The majority (70%) possessed more significant alignments (lower *E* scores) using the conventional FASTA searches

A closer look (cont.)

Some accessions displayed little or no change in significance (*E* score) using either method:

Believed to be caused by low complexity sequences

- Runs of repetitive amino acids
- Celiac proteins, leader sequences

EPISQQQQQQQQQQULQQILQQL

ILQRSGSSSSSSEDD

Length of low complexity regions stays the same, but represents greater portion of an 80 residue sub-peptide

■ FASTA – no low complexity filtering

Approximately ¹/₂ of the sliding window positive accessions fell below the 35% threshold when the conventional FASTA algorithm was employed...

• Example:

GI number 154816295 - short-chain dehydrogenase/reductase protein sliding window output:

>>gi|85701146|sp|P0C0Y5|MTDH_CLAHE Probable NADP-depende (267 aa) initn: 42 init1: 42 opt: 86 Z-score: 133.3 bits: 30.6 E(): 0.016 Smith-Waterman score: 86; 35.366% identity (60.976% similar) in **82** aa overlap (4-79:183-252) 10 2.0 30 40 50 154816 ALVGLTRNLAVELAPFGIRVNCVSPFGIATPMTADFIGLE-REVFENMI----NGVAN-L gi 857 GCIHMARSLANEWRDFA-RVNSISPGYIDTGLS-DFVPKETQQLWHSMIPMGRDGLAKEL 190 200 210 220 230 60 70 80 154816 KGVTHKPDDVAYAALYLASDEAKYV qi 857 KG-----AY--VYFASDASTYTTGADLLIDGGYTTR 240 250 260

Conventional FASTA output:

>>gi|85701146|sp|POC0Y5|MTDH_CLAHE Probable NADP-depende (267 aa) initn: 243 init1: 74 opt: 321 Z-score: 462.6 bits: 93.3 E(): 7.3e-21 Smith-Waterman score: 321; <u>30.682%</u> identity (63.636% similar) in <u>264 aa</u> overlap (8-255:18-265)

		10	20 30	40	
154816	MSIPAKE	RLEGKVALITGA	ASGIGECCAKLF	AAHGAKVIIADV	QDQLG-
		: :::	:: : :	:::	:
ai 857	MPGOOATKHESLLDOLS	SI KGKVVVVTGA	SGPKGMGTEAARGO	AEMGAAVATTYA	SRAOGA
97100.	10	20	30 40	50	60
	EO EO		00	00	100
1 - 401 -					TOO
154816	-QAVSEAIGSSNSN	NATHCDT.LNEEE	VKNTIDTAVATYGK	LD1MFNNAG1-A	DAFKPR
	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		· · · · · · · ·	· · ·	:
gi 857	EENVKELEKTYGIKAKA	AY-KCQVDSYES	CEKLVKDVVADFGQ	IDAFIANAGATA	DSG
	70	80	90 100	110	
	110 12	20 130	140	150	160
154816	IMDNEKKDIERVLGVN	/IGTFLCMKHAA	RVMVPQKSGSIITT	SSLTSHLGGMAS	HAYS
		: ::	: : : : : : :	: : : : : : : : :	: : : :
qi 857	ILDGSVEAWNHVVOVDI	LNGTFHCAKAVG	HHFKERGTGSLVIT	ASMSGHIANFPO	EOTSYN
5 1	120 130	140	150 1	60 170	~
	170	180 1	90 200	210	
154816	CSKHALVGLTRNLAVEL	ADEGIEVNOVS		T.EREVEENMT-	NGV
101010	· · · · · · · · · · · · · · · · · · ·				• •
~ 1057					. .
g1 82 /	VARAGCIHMARSLANE	WRDFA-RVNSIS	PGIIDIGLS-DFVP	KEIQQLWHSMIP	MGRDGL
	180 190	200	210	220 2	30
	220 230	240	250	260 2	70
154816	AN-LKGVTHKPDDVAY	AALYLASDEAKY	VTAQNMLVDGGLSY	CNNSFNMFKYPE	EDT
	:	: : :	: : : : : :		
gi 857	AKELKGAY-	VYFASDASTY	TTGADLLIDGGYTT	R	
	240	250	260		

■ Is this a significant alignment...?

The miracles of science[•]

Sliding Window FASTA output:

>>gi|128388|sp|P19656|NLTP_MAIZE Nonspecific lipid-trans (120 aa)
initn: 468 init1: 468 opt: 468 Z-score: 567.1 bits: 109.7 E(): 1.1e-26
Smith-Waterman score: 468; 100.000% identity (100.000% similar) in 75 aa overlap
(1-75:1-75)

test.0 MARTQQLAVVATAVVALVLLAAATSEAAISCGQVASAIAPCISYARGQGSGPSAGCCSGV gi 128 MARTQQLAVVATAVVALVLLAAATSEAAISCGQVASAIAPCISYARGQGSGPSAGCCSGV test.0 RSLNNAARTTADRRALLERG gi 128 RSLNNAARTTADRRAACNCLKNAAAGVSGLNAGNAASIPSKCGVSIPYTISTSTDCSRVN

How about this ...?

The miracles of science

Conclusion

Using conventional FASTA to assess potential cross-reactivity:

- Reduces the number of false positive results
- Retains sensitivity near current threshold values (35-40%, Bet v 1)
- Mitigates effect of low-complexity sequence regions
- Produces more significant (E) alignments
- Still only one part of "weight of evidence" approach...
- Important to review alignments on a case by case basis

Acknowledgements

Greg Ladics Andre Silvanovitch (Monsanto) Gary Bannon (Monsanto) Pioneer Crop Genetics Regulatory Science & Registration The FARRP dataset (www.allergenonline.com) Allergome (Adriano Mari)

