What's at Risk from Bioaccumulative and Persistent Substances ?

- Substances categorized as PBT or vP vB should be examined in risk assessment using predatory wildlife (and humans) as the ultimate target receptor
 - i.e., the T should relate to effects in mammals/avians/humans

Canadian Focal Species for Wildlife ERA

- For aquatic habitats, the default focal species are mink and/or, river otter and/or, heron and/or kingfisher because:
 - Consumers of aquatic life (30% to 100% fish in diet)
 - Good life history data (diet, metabolic rates, range, etc.)
 - Well distributed throughout Canada in both freshwater and marine/estuarine habitats
 - Relatively high metabolic needs
 - Exposed to contaminants in food and drinking water
- For sediments, sediment-probing birds can be used (e.g., sandpiper)
- For soils, fox, bald eagle and shrew/mouse can be used
- Other focal species can be used if they have the above characteristics

Candidate Substances for Wildlife ERA

- Have moderate to high repeated oral dose toxicity (mg/kg bw/day)
- Have sufficient residence time in the environment for longer-term exposures (but not as defined using the P criterion)
- Are bioaccumulative, but not necessarily highly bioaccumulative (as defined by the B criterion)
- Are released or could be released to local environments in relatively high quantities

 $= P + B + T_{mammalian} + R$

or roughly "PCB-like"

Inherent mammalian or avian toxicity can drive the risk
 HESI-SETAC-ECB Workshop

Wildlife Exposure Model: Bioenergetic Approach

$$C_i = BAF \times C_w$$
 when no tissue residue data

where:

TDI =total daily intake (mg/kg bw/day)

FMR = free metabolic rate of wildlife receptor of interest (kcal/kg bw/day)

 C_i = concentration of contaminant in the *i*th prey species (mg/kg)

 P_i = proportion of the *i*th prey species in the diet (unitless)

 GE_i = gross energy of the *i*th prey species (kcal/kg)

 AE_i = assimilation efficiency of the *i*th prey species by the wildlife receptor (unitless)

 $TDI = \left| FMR\left(\frac{C_i \cdot P_i}{GE_i \cdot AE_i}\right) + \left(C_s \cdot IR_s\right) + \left(C_w \cdot IR_w\right) \right| \cdot Pt$

 C_s = concentration of contaminant in the sediments (mg/kg dw)

 IR_s = intake rate of sediments (kg/kg bw/day dw)

 C_w = concentration of contaminant in the water (mg/L)

 IR_w = intake rate of water (L/kg bw day)

Pt = proportion of the time the receptor spends in the contaminated area (unitless). HESI-SETAC-ECB Workshop

BAF as Food Web Surrogate

- BAF estimated using the Modified Gobas Model
- BAF can be estimated to account for uptake and accumulation in an upper, mid and lower trophic level fish (various sizes and lipid contents)
- Lower to mid-trophic level/lipid content (5-6%) typically fish eaten by mink and otter
- BAF considered "reasonable substitute" for a food web model (Arnot and Gobas 2003)

BAF is Representative of Benthic/Pelagic Food Chain

Generic BAF Model – 3 Trophic Level (Arnot and Gobas 2005)

Generic Three Tropic Level BAF Model (Arnot and Gobas 2005)

 $BAF = (1 - L_B) + ((k_1 \bullet \phi + (k_D \bullet \beta \bullet \tau \bullet \phi \bullet L_D \bullet 1/\delta_L \bullet K_{OW})) / (k_2 + k_E + k_G + k_M))$

$$\begin{split} & L_{B} = \text{lipid content of organism} \\ & k_{1} = \text{gill uptake rate constant} \\ & \Phi = \text{freely dissolved fraction} \\ & k_{D} = \text{dietary uptake rate constant} \\ & \beta = \text{overall foodweb biomagnification factor} \\ & \tau = \text{trophic dilution factor} \\ & L_{D} = \text{lipid content of primary producer} \\ & \delta_{L} = \text{lipid density} \\ & K_{OW} = \text{octanol-water partition coefficient} \\ & k_{2} = \text{gill elimination rate constant} \\ & k_{e} = \text{egestion rate} \\ & k_{g} = \text{growth rate constant} \\ & K_{m} = \text{rate of biotransformation} \end{split}$$

Generic BAF Model Arnot and Gobas 2005

Generic Wildlife Exposure Model: Bioenergetic Approach (Bonnell 2005)

where:

TDI =total daily intake (mg/kg bw/day)

FMR = free metabolic rate of wildlife receptor of interest (kcal/kg bw/day)

 C_i = concentration of contaminant in the *i*th prey species (mg/kg)

 P_i = proportion of the *i*th prey species in the diet (unitless)

 GE_i = gross energy of the *i*th prey species (kcal/kg)

 AE_i = assimilation efficiency of the *i*th prey species by the wildlife receptor (unitless)

 $TDI = \left| FMR\left(\frac{(C_i \cdot P_i)}{GE_i \cdot AE_i}\right) + (C_s \cdot IR_s) + (C_w \cdot IR_w) \right| \cdot Pt$

 C_s = concentration of contaminant in the sediments (mg/kg dw)

 IR_s = intake rate of sediments (kg/kg bw/day dw)

 C_w = concentration of contaminant in the water (mg/L)

 IR_w = intake rate of water (L/kg bw day)

Pt = proportion of the time the receptor spends in the contaminated area (unitless). HESI-SETAC-ECB Workshop

Experience from Risk Assessment

HESI-SETAC-ECB Workshop

Experience: General

- Need to assess current and/or avoid production of substances that have the potential to be found in top predators
- Little to no field information on bioaccumulation/biomagnification of most substances in commercial use (~0.2%)
- Arnot-Gobas BAF approach suitable for screening assessment (will we ever biomonitor !)
- BAF (and BMF) is the correct parameter for understanding the potential risks posed by "PBT-like" or vP vB substances
- Serious lack of wildlife toxicity data (or laboratory data for mammals – less for avians
- Wildlife exposure model can be quite conservative if biotransformation data included and no adjustment of exposure parameters to reflect werage conditions

Experience: Biotransformation in Fish ?

- Measured as K_m (metabolic transformation rate constant) as 1/day
- Very important parameter for correcting BCF/BAF estimates
- Very little data (esters, phenols, neutral organics, vinyl/allyl halides), but should be used when available
- Default in Gobas 2003 model is zero biotransformation
- Gobas and Arnot 2003 have examined using biodegradation results as surrogate for K_m
- Mekenyan Baseline B Model (mammalian extrapolation to fish)

Including Biotransformation to Estimate BAF

A Summary Of The Available Apparent Metabolic Transformation Rate Data (Km*) For Different Chemical Classes (Gobas And Arnot 2003).

Chemical Class	n	Minimum kտ*	Maximum kм*	Mean *	S.D. kм*
Benzyl Halides	1	4.5E-01	4.5E-01	4.5E-01	N/A
Esters	5	5.3E-03	7.7E-01	3.0E-01	3.7E-01
Esters+Esters (phosphate)	125	1.5E-04	2.0E+02	1.3E+01	2.8E+01
Neutral Organics	95	7.0E-03	2.7E+02	1.6E+01	3.5E+01
Phenols	42	1.5E-03	1.6E+01	1.8E+00	3.0E+00
Phenols (dinitro)	5	2.9E+00	9.1E+01	2.9E+01	3.9E+01
Triazines	1	2.1E+01	2.1E+01	2.1E+01	N/A
Vinyl/Allyl Ethers	1	8.7E+00	8.7E+00	8.7E+00	N/A
Vinyl/Allyl Halides	5	2.7E+00	6.7E+01	3.0E+01	3.0E+01

Further Work on Biotransformation Rates

- Arnot (2005, 2006) investigated the relationship empirical biodegradation rates and "apparent" metabolic rates in fish and between predicted biodegradation and "apparent" metabolic rates in fish
- Results are preliminary at this point, but it appears possible to define a baseline "de minimus" metabolic rate for substances that are susceptible to biodegradation
- The de minimus baseline can be moved upwards to more favorable biotransformation rates on a case by case basis

Experience: Incorporating ADME Information

- Including biotransformation rate information in models can move an estimated BCF and BAF <u>several orders of magnitude lower</u> depending on the rate constant
 - Can mean the difference of finding a risk with a substance based on wildlife exposure or not
- Need to understand how ADME information can be incorporated into regulatory assessment schemes
 - Stand alone estimation of bioaccumulation
 - Models
- Need to understand what information can be obtained from in vitro assays (e.g., absorption rates, distribution, biotransformation rates)
- Need to understand which *in vitro* techniques can supply needed ADME information
- Need to understand the degree of extrapolation involved in going from *in vitro* to *in vivo* system
 - Inter and intra species variability
 - Bins of rate information for ADME HESI-SETAC-ECB Workshop

How Environment Canada is Helping to Resolve 'B' Issues: 1

quality)

- Accepted data submissions from industry for initial categorization of B
 - Modeled estimates of B were revised based on evidence of ADME processes
 - ICG Aliphatic Working Group submission for aliphatic esters, alcohols and acids (A. Weisbrod et al.)
- HESI Bioaccumulation Subcommittee/SETAC Global Advisory Group
 - HESI in vivo B database workshop (design & data

- HESI *in vitro* workshop (ADME, cross species extrapolation)
- HESI / ECB /SETAC Workshop on B assessment approaches

How Environment Canada is Helping to Resolve 'B' Issues: 2

- Augmenting 'B' Database (with J. Arnot, Trent University)
 Non-DSL substances (another ~1300 BCFs)
- Biotransformation investigation (with J. Arnot, Trent University)
 - Examining relationships between biodegradation and biotransformation including chemical specific rates and "binning" structural and functional groups for chemical classes
 - Defining classes of chemicals for which these methods are most applicable, i.e., establishing domains

THANK YOU!

In the Spirit of Protection

Environment Environ Canada Canad

www.royhenryvickers.com