*** Pre-publication, do not cite or distribute per instructions of the authors! *** Revised: 13 March 2006

1	A	Animal Use Replacement, Reduction and Refinement: Development of an
2		Integrated Testing Strategy for Bioconcentration of Chemicals in Fish $^{ inyeta}$
3		
4	Wat	ze de Wolf ^{*,†} , Mike Comber [‡] , Peter Douben ^{\$} , Sylvia Gimeno , Martin Holt [#] ,
5	Μ	arc Léonard ^{††} , Adam Lillicrap ^{‡‡} , Dick Sijm ^{§§} , Roger van Egmond ^Ⅲ , Anne
6		Weisbrod ^{##} , and Graham Whale ^{†††} .
7		
8		Running Header: Integrated Testing Bioconcentration
9		
10	Ŧ	DuPont Coordination Center, Antoon Spinoystraat 6, 2800 Mechelen, Belgium
11	† +	ExxonMobil, Hermeslaan 2, 1831 Machelen, Belgium
12	§	Unilever Colworth, Sharnbrook MK44 1LQ, United Kingdom
13		Procter & Gamble, Temselaan 100, 1853 Brussels, Belgium
14	#	ECETOC, Av. Van Nieuwenhuyse 4/6, 1160 Brussels, Belgium
15	††	L'Oréal, 1 Av. Eugene Schueller, BP22, 93601 Aulnay-sous-Bois, France
16	* *	AstraZeneca, Freshwater Quarry, Brixham TQ5 8BA, United Kingdom
17	§ §	RIVM, PO Box 1, 3720 BA Bilthoven, the Netherlands
18		Unilever Colworth, Sharnbrook MK44 1LQ, United Kingdom
19 20	## 45253,	The Procter & Gamble Company, 11810 East Miami River Road, Cincinnati, OH USA
21 22	††† United	Shell Global Solutions, Cheshire Innovation Park, PO Box 1, Chester CH1 3SH, Kingdom
23		

Integrated Testing Bioconcentration

Page 1

*** Pre-publication, do not cite or distribute per instructions of the authors! ***

24	*	To whom correspondence may be addressed at DuPont Coordination Center, A.
25	Spinoy	vstraat 6, 2800 Mechelen, Belgium, Tel: +32-15-288-731, Fax: +32-15-288-754,
26	Email:	watze.de-wolf@bel.dupont.com
27		
28	@	This paper is dedicated to Tom C.J. Feijtel (1959 – 2005), who inspired many of
29	us.	

30 ABSTRACT

When addressing the use of fish for the environmental safety of chemicals and effluents there are many opportunities for applying the principles of the 3Rs: Reduce, Refine and Replace. The current environmental regulatory testing strategy for bioconcentration and secondary poisoning has been reviewed and alternative approaches that provide useful information are described.

Several approaches can be used to reduce the number of fish used in the OECD 36 37 Test Guideline 305, including alternative *in vivo* test methods such as the dietary accumulation test and the static exposure approach. The best replacement approach 38 would seem to utilise read-across, chemical grouping, and (Q)SARs, with an assessment 39 40 of the key processes in bioconcentration: adsorption, distribution, metabolism and excretion (ADME). Biomimetic extraction has particular usefulness in addressing 41 bioavailable chemicals and is in some circumstances capable of predicting uptake. Use of 42 43 alternative organisms such as invertebrates should also be considered. A single cut-off value for molecular weight and size beyond which no absorption will take place cannot 44 be identified. Recommendations for their use in B-categorisation schemes are provided. 45 Assessment of biotransformation with *in vitro* assays and *in silico* approaches hold 46 significant promise. Further research is needed to identify their variability, confidence 47 48 limits, and ways to use this as a basis to estimate BCFs.

A tiered bioconcentration testing strategy has been developed taking account of
 the alternatives discussed.

- Keywords: Integrated testing strategy, Bioconcentration, Animal testing, 3Rs,
 OECD 305
- 53

54 INTRODUCTION

Using animals for safety testing represents a dilemma about balancing the need to ensure chemicals can be handled and used safely, against legitimate and widely felt societal concerns about animal testing. A range of testing is required to provide data for product hazard assessments by the chemicals industry. Tests are based on regulations and voluntary industrial initiatives designed to protect human and wildlife health as well as the surrounding environment. Testing for environmental effects includes assessment of bioconcentration, notably with fish.

European legislation requires that non-animal, alternative approaches of testing should be used in the place of animal procedures wherever possible (EEC 1986) states that 'an experiment shall not be performed if another scientifically satisfactory method of obtaining the result sought, not entailing the use of an animal, is reasonably practically available'.

Russell and Burch (1959) originally defined the **R**eplace, **R**educe and **R**efine principles (3Rs). 'Replacement' means the substitution for conscious living higher animals of insentient material. 'Reduction' means reduction in the numbers of animals used to obtain information of given amount and precision. 'Refinement' means any decrease in the incidence or severity of inhumane procedures applied to those animals which still have to be used.

An additional '3Rs' known as the 'Solna principles' (OECD 1996a) have been identified. These 3Rs state that tests for regulatory purposes need to reflect the following: biological **R**elevance (meaningfulness and usefulness of a test for a particular purpose), **R**eliability (reproducibility of results within and between laboratories), and **R**egulatory acceptability (suitability of a test for risk assessment purposes (human health / environment).

Fish are typically secondary consumers or predators, therefore considered to represent a high trophic level, and organisms of choice for assessing the bioconcentration potential of chemicals in aquatic organisms. Since fish are an important part of the diet of humans, they also represent a potential route of exposure of chemicals to humans.

83 The usual procedure in a regulatory context for determining a bioconcentration factor (BCF) is to apply the OECD 305 (Bioaccumulation: flow-through fish test) (OECD 84 1996b). However, many of the existing chemical legislative frameworks around the 85 world, except in Japan, do not require experimental determination of bioconcentration at 86 basic tiers of the risk assessment; they rely on extrapolation using the organic chemical's 87 physico-chemical properties (log K_{ow}). This screening procedure assumes no substantial 88 bioconcentration for compounds with a log $K_{ow} < 3$. Above a log K_{ow} of 6, non-linear 89 relationships can be applied and in most of these cases a chemical by chemical evaluation 90 is more appropriate (Nendza 1991). The log K_{ow} based QSAR approach is not reliable for 91 all chemical classes, e.g. surface active agents, organic colorants (ECETOC 1998) or 92 lipophilic chemicals that are biotransformed (de Wolf *et al.* 1992). 93

94	Bioconcentration factors are used in classification of substances dangerous for the
95	aquatic environment (UN 2003) and in regulatory B-assessments and prioritization
96	schemes (EC 2003; DGEE 2003; CEPA 1999). For example in Europe, if a substance has
97	a BCF $>$ 2,000, it fulfils the criterion for being bioaccumulative (B). If it has a BCF
98	> 5,000, it fulfils the criterion for being very bioaccumulative (vB).
99	The European Commission has recently adopted a draft legislative text, describing the
100	Registration, Evaluation, Authorisation and Restrictions of Chemicals (REACH) (DGEE
101	2003). Chemicals produced at above 1 tonne per year will be subjected to a registration
102	procedure, and information relevant to health and environmental safety should be
103	provided. This could mean approximately 12-13 million animals being used for the
104	assessment of approximately 30,000 chemicals by 2012 (IEH 2001). Non animal testing
105	is promoted in REACH, although strategies for using alternative information
106	methodologies have not been spelt out. However, such strategies are needed not only to
107	achieve the 3Rs, but also to keep the REACH testing costs at manageable levels.
108	The main objective of this paper is to present a bioconcentration testing strategy
109	based on the work of an ECETOC Task Force (ECETOC 2005) that can be applied in a
110	regulatory context taking account of alternative information methodologies.

111

112 BACKGROUND AND CURRENT APPROACHES

In the context of animal testing in Europe, the definition used for an animal is that
contained in the UK Guidance on the Operation of the Animals (Scientific Procedures)
Act, 1986 (UK 1986). This act defines a 'protected animal' as any living vertebrate, other

than man [Section 1(1) of the Act]. This was extended to the invertebrate species *Octopus vulgaris* via an amendment (UK 1993). The protection also extends to certain immature
forms of development of mammals, birds and reptiles - from halfway through the
gestation or incubation period; and for fish, amphibians and *Octopus vulgaris* - from the
time at which they become capable of independent feeding. Several other definitions for
an animal do exist (e.g. EEC 1986; USA 1966) but will not be used here.

It is more important that the spirit of the 3Rs is applied, as opposed to which specific category an alternative approach fits. For instance, the use of fish for harvesting of organs or cells is an area for possible confusion as to whether the test is a replacement or a refinement. Fish held in an aquarium and humanely sacrificed are not counted as animals used in an experimental procedure (UK 1986). As a consequence, the use of the organs/cells would constitute a replacement.

Accumulation of a chemical is the result of a mix of physiological and physical 128 129 processes - absorption, distribution, metabolism, and excretion (ADME). The processes are described, based on Hodgeson et al. (1994). Absorption occurs after the introduction 130 of a chemical through food, water, air, sediment, or soil, and it is the transport across a 131 biological membrane into systemic circulation e.g. across fish gills, intestine, skin. After 132 absorption, a chemical may bind to plasma proteins for circulation throughout the body, 133 as well as to tissue components like fat or bone. This is called distribution. The chemical 134 may be distributed to a tissue and elicit a toxic response; other tissues may serve as 135 permanent sinks (e.g. fat), or as temporary depots allowing for slow release into 136 137 circulation. After reaching a tissue, enzymes may biotransform the chemical. During phase I biotransformation reactions a polar group is introduced into the molecule, which 138

increases its water solubility and renders it a suitable substrate for phase II reactions. In 139 phase II biotransformation reactions the (parent or altered) molecule combines with an 140 endogenous substrate and can be readily excreted. Biotransformation is generally a 141 detoxification mechanism. Excretion refers to the process by which a chemical gets 142 eliminated from the body through endogenous waste. Chemicals may be exhaled directly 143 144 through the gills, or may be broken down (biotransformed) and ultimately exhaled as CO_2 . Polar molecules that are freely soluble in plasma can be removed through renal 145 filtration and passed into urine. Lipophilic (fat soluble) chemicals may be conjugated and 146 147 excreted in bile (faeces). In addition to excretion, growth of the organism may also be relevant affecting the chemical concentration in the organism, in the case when the rate of 148 other excretion processes is in the same order of magnitude as the growth (dilution) rate. 149 Furthermore, other "excretion" processes could be the transfer of lipophilic chemicals to 150 the offspring via the eggs. 151

For the experimental determination of bioconcentration factors (BCF) in fish, a 152 number of test guidelines have been documented; the most generally applied being 153 OECD 305 (OECD 1996b). OECD 305 is conducted in 2 phases: an exposure phase 154 followed by a depuration phase. In the exposure phase, a sufficient number of fish is 155 156 exposed to 2 sublethal concentrations of the test substance. During exposure both fish and water are sampled at regular time-intervals and the concentration of (parent) test 157 substance measured. During the first phase the concentration of test substance in the 158 water should be kept constant within narrow limits ($\pm 20\%$). Hence, the guideline 159 recommends the use of a flow-through system. After having reached an apparent steady-160 state (or after 28 d), the remaining fish are transferred to clean water and the depuration is 161

162	followed. The BCF is expressed as a function of total wet weight of the fish and may also
163	be expressed as a function of total lipid weight. Specific chemical analysis and
164	radiotracer techniques may be used as analytical methods. If the latter technique is
165	applied, a specific chemical analysis (or a selective cleaning-up procedure) of the parent
166	compound should be used at the end of the exposure period.
167	OECD 305 requires 3 groups of fish, 2 exposure groups and a control group held
168	under identical conditions. A minimum of 4 fish are sampled on at least 5 occasions
169	during the uptake phase, and at least on 4 occasions during the elimination phase.
170	(Table 1)
171	The guideline does not specify whether it is acceptable to reduce fish sampling in
172	the control group, hence it has to be assumed that the sampling protocol for the control
173	group is similar to that of the 2 exposure groups.
174	Assuming that aquatic organisms can be mathematically represented as a
175	homogenously mixed one-compartment then bioconcentration can be described with a
176	simple first-order kinetic model:
177	$C_{f} = C_{w} * k_{u}/k_{d} * (1-e^{-t^{*}kd})$
178	where C_f is the substance concentration in fish (mg/g wet fish), C_w the substance
179	concentration in water (mg/l), k_u the uptake clearance (ml/g wet fish/day), k_d the
180	elimination rate constant (1/day), and t the exposure time (day). In this model, k_{u} and k_{d}
181	are independent of C_w and t, but dependent on the properties of the chemical being
182	bioconcentrated. Usually, first order one compartment kinetics have been found to
183	adequately describe bioconcentration (Sijm 1991; Kristensen et al. 1991).

Hence, there are 2 different methods to evaluate BCF. The first is to calculate it from the concentration of a chemical in fish divided by the concentration in water (under steady-state conditions). The second method uses kinetic data, i.e. uptake clearance and elimination rate.

188 BCF =
$$k_u/k_d$$
 = C_f/C_w

Experience from a ring test of the former OECD 305E between European laboratories showed that the variations in BCF estimates between the 2 methods was less than the inter-laboratory variation (Kristensen et al. 1991). This is further improved when a correction for the bioavailable fraction in water is made (Schrap et al. 1990), (e.g. for sorption to suspended or dissolved organic materials).

Most of the earlier studies to determine the BCF of highly hydrophobic substances did not always follow the OECD 305 test protocol possibly introducing artefacts in the testing and in the interpretation of the BCFs from these studies. These artefacts may include difficulties in measuring the 'true' aqueous concentration due to sorption of the substances to particulate and dissolved (organic) matter; adsorption processes to glass walls or other materials; volatilisation; etc. (Anonymous 2004).

For less hydrophobic compounds (log $K_{ow} < 3$) passive diffusion of freely dissolved, bioavailable material through the cell membrane (i.e. the hydrophobic phase) is considered to be the rate limiting step for uptake. For more hydrophobic compounds diffusion is limited by the aqueous boundary layers between the fish membrane and the bulk water (Gobas et al. 1987).

Integrated Testing Bioconcentration

The uptake clearance (k_u ; ml/g wet fish/day) is relatively constant between log K_{ow} of 3 and 6 but varies as a function of fish weight (Sijm et al. 1995). For nonionic organic chemicals with log K_{ow} > 6, there is some evidence to suggest that the uptake clearance may decline with increasing hydrophobicity.

An estimate of the rate of depuration k_d may be obtained from empirical relationships between k_d and log K_{ow} . These relationships apply only to chemicals with log K_{ow} values between 2 and 6.5 (Hawker et al. 1988). An important elimination factor in bioconcentration is the possible biotransformation of substances (Sijm et al. 1997) which is ignored when estimating k_d via empirical relationships with K_{ow} (de Wolf et al. 1992). In such cases $k_d = k_e + k_m$ where, k_e represents excretion of the parent molecule and k_m elimination by biotransformation.

Since many substances that bioconcentrate distribute themselves within the 216 organism's body into the fat or lipids, the first estimation that may be carried out for a 217 218 BCF is of a chemical's potential to partition between octanol and water. QSARs and experimental techniques for measuring this parameter are available (ECETOC 1998, 219 2003; EC 2003). The recommended model for log K_{ow} up to 6 is Veith et al. (1979), 220 while for chemicals with $\log K_{ow} > 6$, a parabolic equation, re-calculated from that 221 222 described by Connell et al. (1988), is recommended. In general (Q)SAR-models should only be used for those chemicals which fall within the domain of the model and for which 223 the descriptors are suitable (EC 2003; ECETOC 2003). Surfactants are clear examples of 224 organic materials outside the scope of (Q)SAR models which use log Kow as this is not an 225 226 appropriate physico-chemical descriptor for such materials. Metals also fall outside most QSAR-models as active uptake and sequestration can occur in biological systems. In 227

- 228 cases where uptake is hindered or elimination via biotransformation is increased EU-
- 229 accepted QSAR-models will overestimate bioconcentration.
- 230

231 REVIEW OF ALTERNATIVE APPROACHES

As part of REACH, it is possible that many chemicals in the tonnage level of 232 more than 100 tonne per annum will need to be tested for their potential to 233 bioconcentrate. Pedersen et al. (2003) estimated that 5,500 chemicals in Europe are 234 manufactured or imported at this tonnage level. Taking into account the 55% percent of 235 HPV-chemicals with a log $K_{ow} > 2.7$ (Beek 1991), the number of chemicals for BCF-236 237 testing can be calculated as 3,025. With a minimum number of fish for an OECD 305 study estimated at 108 (Table 1), the minimum required number of fish for REACH 238 bioconcentration testing is 326,700. The following sections will review reduction and 239 replacement approaches to assess the bioconcentration potential of chemicals in fish. So 240 far, no refinement strategy has been identified. 241 Reduction of animal use 242 This can be achieved by exposing less fish per replicate/concentration to the 243 minimum that can be statistically justified, or by limiting the numbers of concentration 244 exposures to 1. If the latter is applied, the number of fish used for testing can immediately 245 be reduced by 33% (Table 1). 246

Alternatively, the number of sampling points can be reduced to a number sufficient for estimating the kinetic parameters from the slopes of the uptake and depuration curves (Hinderleiter 2004). Unlike the standard OECD test, steady state does

not need to be achieved. This design can lower the animal usage by approximately 55%
(Table 1). Benefits would further include lower cost, faster execution, less waste, and less
chemical usage.

Another approach to reducing the number of animals used in OECD 305 depends upon the purpose for which the test is being conducted. In some regulatory schemes all that is necessary is to know whether the BCF is greater than a particular trigger value. In such circumstances conducting a depuration phase may not be necessary, reducing the animal usage by approximately 45%.

Static exposure procedures allow for determination of uptake clearance and 258 depuration rate constants during bioconcentration of stable substances (Banerjee et 259 al.1984; de Wolf et al. 1998). It requires the exposure of fish to an aqueous solution of 260 the substance under static conditions, and measurement of loss of substance from the 261 exposure system as a function of time. The rate constants are obtained from fitting the 262 time-concentration profile to a simple mathematical model describing the exchange of 263 substance between fish and water. The original approach by Banerjee et al. (1984) 264 measured the substance in water and assumed removal processes such as 265 biotransformation, sorption and volatilisation are not likely to occur. De Wolf et al. 266 (1998) adapted this approach to study volatile materials by exposing fish to an aqueous 267 268 solution in a fully closed system while measuring loss of substance from the air as a function of time. These approaches use less than 20% of the number of animals as 269 compared to the OECD 305 study (Table 1). 270

Integrated Testing Bioconcentration

A mathematical analysis of the robustness of static exposure systems (de Wolf et al. 1995) showed reasonably accurate estimates of uptake clearance and elimination rate constants are obtained when the substance concentration in fish is determined at the end of the exposure period, even in cases where (limited) loss occurs due to sorption and biotransformation. Further research comparing empirical data for metabolised substances from both static and flow-through experiments is required to assess the full applicability of the static exposure method.

The elimination rate constants measured in a dietary bioaccumulation study takes account of possible biotransformation reactions and may provide information helpful for estimation of the bioconcentration factor. In combination with a conservative estimate of the uptake clearance a reasonable estimate of the BCF can be obtained.

In a dietary bioaccumulation study fish are fed chemical-spiked food at a fixed 282 concentration over a specified period of time depending on the expected half-life $(T\frac{1}{2})$ 283 284 (Parkerton et al. 2001). At the end of this dietary exposure period some fish are analysed for parent substance (time = 0 of the depuration phase). The remaining fish are 285 transferred to clean diet, and sequentially sampled and analysed over time so that a 286 depuration curve can be established. From these data the half-life, dietary assimilation 287 efficiency and BAF, defined as the steady-state ratio of the concentration in fish to that in 288 the diet, can be readily derived. 289

Dietary bioaccumulation tests are, in practice, much easier to conduct for poorly water-soluble substances than the OECD 305 test, because a higher and more constant exposure to the substance can be administered via the diet than via water. A pitfall could

be the possibility for overestimation of the BCF in cases where gill uptake clearance rate
is reduced. These experiments require approximately 40% of the number of animals used
in the OECD 305 (Table 1).

296 Replacement of animals

A replacement strategy can be achieved by considering information from other species, or from related chemicals, (Q)SAR modelling, biomimetic or surrogate approaches, *in vitro* and embryos assays. These approaches are acceptable when validated and fit for the regulatory purpose.

Read-across/analogue and chemical grouping/category approaches typically involve using information on one chemical or a group of chemicals, respectively, and making some assessment about the relevance of that information for the unknown value of the non-tested chemical. QSARs for predicting BCF have been extensively evaluated and are mainly based on correlations with K_{ow} (ECETOC 1995, 1998, 2003). Eighty percent of chemicals to be registered under REACH can be covered using a combination of these techniques for estimating bioconcentration (Pedersen et al. 2003).

Based on a review of all available BCF data in the literature a computer program that allows for the estimation of BCF-values for a wide range of organic chemicals has been developed (BCFWIN by Meylan et al. 1999). This program estimates the BCF using the substance's log K_{ow} and correction factors to take into account certain structural and molecular factors that influence bioaccumulation by hindering uptake, and other factors that consider biotransformation (www.epa.gov/oppt/p2framework/docs/envfate.htm#Sub4). The approach adopted was to group chemicals and derive relationships for each group. It

315	was reported that some of these factors could be rationalised on the basis that they were
316	related to some degree of reactivity or known biotransformation behaviour.

Arnot and Gobas (2003) have developed a bioaccumulation OSAR based on a 317 mass-balance approach for assessing the bioaccumulation potential of organic chemicals 318 in aquatic food webs. Processes of chemical absorption, distribution, biotransformation 319 and egestion can be accounted for using values representative of a so called "generic 320 321 fish". As a result, the QSAR can be adapted to include the effect of metabolic transformation and trophic dilution on the calculated BCF and BAF. The model has been 322 used by Environment Canada to categorize discrete organic substances on the Canadian 323 324 Domestic Substances List (DSL) for bioaccumulation potential (Environment Canada 2003). 325

Another approach aims to address biotransformation starting from first principles (Dimitrov, Dimitrova et al. 2002; Dimitrov, Mekenyan et al. 2002; Dimitrov et al. 2006). Here, BCF is first modelled as a maximum value, ignoring any mitigating factors and based only on log Kow as an indicator of partitioning behaviour. Then the other factors are included, thus size, maximum diameter of 1.5 nm (Dimitrov, Dimitrova et al. 2002) and potential metabolism by fish (Dimitrov et al. 2006) are used to reduce the predicted BCF (www.oasis-lmc.org/software.php).

333 Södergren (1987) described a system based on a semi-permeable membrane 334 device (SPMD) composed of a dialysis bag filled with hexane which has been further 335 developed based on low density polyethylene bags which contain natural lipids or the 336 model lipid triolein (1,2,3-tri[cis-9-octadecenoyl]glycerol) (see Huckins et al. 1997) to 337 mimic the way organisms extract chemicals from water (i.e. biomimetic extraction).

338	SPMDs are relatively easy to use and will extract only bioavailable chemicals from the
339	water in proportion to their partitioning coefficients simulating the potential for aquatic
340	organisms to bioconcentrate chemicals. However, the equilibration time can be very long
341	thus it has been suggested that results from SPMDs exposed for less than 2 months
342	should be treated with caution (Booij et al. 1998).

Arthur et al. (1990) described another biometic extraction approach in which they constructed a Solid Phase Micro Extractor (SPME), composed of a thin polymer coating on a fused silica fibre. This fibre accumulation (and kinetics) is analogous to the bioconcentration of chemicals observed in aquatic organisms (Leslie et al. 2002). The process is very fast, due to the high surface area to volume ratio and generally easy to set up and use (Arthur et al. 1990; Vaes et al. 1996, 1997; Mayer et al. 2003).

A general disadvantage of biomimetic extractions is that the ability of fish to metabolise chemicals is not simulated, thus the bioconcentration of chemicals will be over-estimated. Furthermore, the potential for chemicals to be actively taken up via the gut is not addressed.

The physiological processes that govern bioconcentration in invertebrates may differ greatly from those in fish (e.g. the biotransformation systems are less developed in most invertebrates). Therefore, the use of invertebrates to assess bioconcentration potential of chemicals in fish cannot be routinely recommended. However, if there is only a need to demonstrate that the BCF in fish is below a certain value, then it may be possible to utilise BCFs from invertebrates as conservative estimations of the BCF in fish. Analogues for risk assessment, the BCF derived from an invertebrate could also be

used as a maximal value, and if the risk assessment indicated no concern then the use of
fish to derive a BCF for fish would be difficult to justify.

Reduced absorption. Lipinski et al. (1997) first identified 5 physical chemical characteristics that influence solubility and absorption across the intestinal lumen using more than 2,200 drug development tests. These characteristics have been rigorously reviewed (Wenlock et al. 2003; Proudfoot 2005), used to develop commercial models to estimate absorption in mammals, and are commonly used by the human and veterinary pharmaceutical industry. Although less research has been conducted in fish, data indicate significant similarity among all vertebrates, as described below.

"Lipinksi's Rule of 5" allowed the prediction of poor solubility, and poor 369 370 absorption from chemical structure. A chemical is not likely to cross a biological membrane in quantities sufficient to exert a pharmacological or toxic response when it 371 has more than 5 Hydrogen (H)-bond donors, 10 H-bond acceptors, molecular weight 372 373 greater than 500, and has a Log K_{ow} value greater than 5 (Lipinksi et al. 1997). Wenlock et al. (2003) studied about 600 additional chemicals and found that 90% of the absorbed 374 compounds had fewer than 4 Hydrogen (H)-bond donors, <7 H-bond acceptors, 375 molecular weight less than 473, and had a Log D value less than 4.3. More recent work 376 by Vieth et al. (2004) and Proudfoot (2005) supports the lower numbers. Molecular 377 378 charge and the number of rotational bonds will also affect absorption by passive diffusion across a membrane or diffusion between cells. 379

The "leakiness" of a tissue, or its ability to allow a chemical to passively diffuse through it, is measured using trans-epithelial electrical resistance (TEER) and can be used

382	to compare tissue capabilities. A low TEER value indicates the tissue has greater
383	absorption potential. Although the studies by Lipinski et al. (1997), Wenlock et al.
384	(2003), Vieth et al. (2004) and Produdfoot (2005) focussed on absorption across the
385	intestinal lumen, the more restrictive TEER for fish gills (Table 2) implies that the
386	equations and concepts can be reapplied to conservatively estimate absorption in fish.
387	Molecular weight. Several values have been suggested for the molecular weight
388	(MW) cut-off for absorption across fish tissues. The EU TGD (EC 2003) indicates that
389	molecules with a MW greater than 700 g/mol are less likely to be absorbed and
390	bioconcentrate, whereas the US EPA, exempts chemicals with a molecular weight of
391	above 1,100 g/mol in the PBT assessment conducted under the Toxic Substances Control
392	Act (US EPA 1999). Anliker et al. (1988) suggested that a pigment could be excluded
393	from a fish bioaccumulation test if it has both a molecular weight of greater than 450 and
394	a cross section of over 1.05 nm (as the second smallest van der Waals diameter or C_{eff}).
395	Rekker et al. (1992) suggested that a calculated log K_{ow} of > 8 can be used on its own, or
396	in combination with a molecular weight of $>$ 700-1,000 to conclude (with confidence)
397	that the compound is unlikely to bioaccumulate. While there has been limited
398	experimental evidence for a molecular weight cut-off, Burreau et al. (2004) did
399	demonstrate reduced bioconcentration and no biomagnification for high molecular weight
400	polybrominated diphenyl ethers, with 6 or more bromines, molecular weight 644-959.
401	Considering that molecular size and shape vary versus MW, molecular weight alone is
402	insufficient to allow absorption predictions. However, it does suggest that once the
403	molecular weight is in the region of 700 - 1,100, depending on other factors, a reduced
404	BCF may be expected. Hence, while recognising the uncertainties in the interpretation of

•

407

405	experimental results, we recommend that to demonstrate a reduced BCF a substance
406	should have either:

a molecular weight in excess of 1,100 g/mol, or

408	٠	a molecular weight of $700 - 1,100$ g/mol with other indicators (see later
409		discussion).

Molecular size. Molecular size may be considered as a more refined approach, 410 taking into account molecular shape and flexibility explicitly rather than molecular 411 412 weight alone. Opperhuizen et al. (1985) suggested a limiting cross sectional diameter for gill membrane permeation of 0.95 nm. in their study on polychlorinated naphthalenes 413 (PCNs) bioconcentration Loonen et al. (1994) studied the bioconcentration of 414 polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and found that the 415 laterally substituted (2,3,7,8 substituted) were bioconcentrated while the non-laterally 416 substituted were not. The main reason for this was attributed to metabolism (previously 417 reported by Opperhuizen et al. 1990; Sijm et al. 1993), however, lower lipid solubility 418 and lower membrane permeability were also considered to have played a role in the 419 420 reduced BCFs observed. The non-accumulating structures would all have exceeded the effective cross-sectional diameter of 0.95 nm. 421

Anliker et al. (1987) studied the limits of bioconcentration of azo pigments in fish
and their relation to the partition coefficient and the solubility in water and octanol.
Despite a high calculated log K_{ow} for 2 pigments, the experimentally determined log
BCFs were low. The explanation for this apparent inconsistency is the very limited fat
(lipid) storage potential of these pigments, indicated by their low solubility in n-octanol

427 (< 1 and < 0.1 mg/L; see below) and their large molecular size (i.e. cross sectional
428 diameters of 0.97 and 1.68 nm).

Anliker et al. (1988) assessed 23 disperse dyestuffs, 2 organic pigments and a 429 fluorescent whitening agent, for which the experimental BCFs in fish were known. 430 Sixteen halogenated aromatic hydrocarbons were included for comparison. None of the 431 disperse dyestuffs, even the highly lipophilic ones with $\log K_{ow} > 3$, accumulated 432 significantly in fish. Their large molecular size was suggested to prevent their effective 433 permeation through biological membranes and thus limit their uptake during the time of 434 exposure. Anliker proposed that a second largest cross section of over 1.05 nm with 435 molecular weight of greater than 450 would suggest a lack of bioconcentration for 436 organic colourants. 437

Although lack of bioconcentration of some chemicals with a cross section of 438 > 0.95 nm has been explained by limited membrane permeability, other studies have 439 440 demonstrated uptake by fish and other species of substances with large cross sections (e.g. some dioxin and PBDE congeners) (Opperhuizen et al. 1987; Morris et al. 2004). 441 Therefore a simple parameter may not be sufficient to explain when reduced BCF/BAF 442 occurs. Dimitrov, Dimitrova et al. (2002) have tried to develop a more mechanistic 443 approach to address this concept, using of molecular weight, size, and flexibility in their 444 BCF estimates. 445

Dimitrov, Mekenyan et al. (2002) found that for compounds with a log $K_{ow} > 5.0$, a threshold value of 1.5 nm for the maximum cross-sectional diameter (i.e. molecular length) could discriminate between chemicals with BCF > 2,000 from those with BCF

449	< 2,000. This critical value was found to be comparable with the architecture of the cell
450	membrane, i.e. half the thickness of the lipid bilayer of a cell membrane. This is
451	consistent with a possible switch in uptake mechanism from passive diffusion through the
452	bilayer to facilitated diffusion or active transport. In a later paper, Dimitrov et al. (2003)
453	used this parameter to assess experimental data on a wide range of chemicals. The
454	conclusion was that a chemical with maximum cross-sectional diameter larger than 1.5
455	nm would not have a BCF $>$ 5,000, i.e. would not meet the EU PBT criteria for vB
456	chemicals (EC 2003). In unpublished work, following further assessment of their data set,
457	they have changed this value to 1.74 nm (Dimitrov et al. 2004).
458	Earlier Opperhuizen et al. (1987) proposed that a substance with an effective
459	molecular length > 4.3 nm would not pass membranes, either in the gills or in the gut, at
460	all, based on a series of bioaccumulation and bioconcentration studies with linear and
461	cyclic polydimethylsiloxanes (silicones) varying in chain length. Membrane crossing is
462	very unlikely since such large molecules would disturb the entire interior strucuture of
463	the lipid membrane. Molecular weight did not explain reduced uptake, since 1 of the
464	substances with a molecular weight of 1,050 was detected in fish. The cross sectional
465	diameter of silicones could in itself not explain the reduced uptake since these diameters
466	were smaller or equal to those of PCBs that did bioaccumulate strongly.
467	Opperhuizen et al. (1987) also referred to a study by Hardy et al. (1974) where
468	uptake in codlings of long chain alkanes was disturbed for alkanes with corresponding
469	molecular lengths of > 4.3 nm. Tolls et al. (2000) observed uptake in fish of some
470	nonionic surfactants with an apparent equal length to long chain alkanes which seems

471 contradictory to the earlier proposed cut-off molecular length by Opperhuizen et al.

472	(1987). However, the uptake of the long nonioinc surfactants may be explained by
473	internal molecular flexibility reducing the effective molecular length below 4.3 nm.
474	In conclusion there would appear to be no clear cut-off value for molecular size
475	beyond which no absorption will take place. While recognising the uncertainties in the
476	interpretation of experimental results, it is recommended:
477	• a maximum effective molecular length of 4.3 nm indicates no uptake and indicates a
478	chemical is not bioconcentrating;
479	• a maximum cross-sectional diameter of 1.74 nm indicates a chemical would not have
480	a BCF > 5,000;
481	• a maximum cross-sectional diameter of 1.74 nm plus a molecular weight of 700 –
482	1,100 would suggest a chemical would not have a $BCF > 2,000$.
483	Other indicators. There are other indicators for low uptake that could also be used
484	to suggest that a chemical, despite having a log K_{ow} in excess of 4.5, has a low
485	bioconcentration potential such as lack of experimentally observed gill or skin
486	permeability, and low or reduced uptake in mammalian studies e.g. OECD 420, 423, 425
487	and 435 (OECD 2001a, 2001b, 2001c, 2004). Cell culture models offer many
488	advantageous features for the analysis of chemical transport across membranes and can
489	be used to expedite identification of compounds with less favourable uptake properties,
490	and to evaluate structure-absorption relationships.
491	Wood et al. (1997) developed a method for the primary culture of gill epithelial cells

492 from freshwater rainbow trout. Application in quantitative analysis of chemical transport

One *in vitro* model system that has proven useful in chemical gastro-intestinal absorption studies is the Caco-2 cell line (Hidalgo et al. 1996). Caco-2 cells are human in origin, and can be manipulated in culture so that they exhibit many characteristics of the human small intestinal epithelium. Caco-2 monolayers have been extensively used in the prediction of intestinal absorption *in vivo* (Bailey et al. 1996), and have been found specifically useful in identification of pharmaceuticals with potential absorption problems (Artursson et al. 1996).

502 Use of Caco-2 monolayers for prediction of fish gill absorption *in vivo* may 503 overestimate potential absorption of a chemical though the gill (Table 2). Use of these 504 cellular models can decrease the number of animals needed for bioconcentration studies 505 by identifying those chemicals which have limited uptake. An additional advantage of 506 this cell culture model is that multiple studies can be performed with a relatively small 507 amount of radiolabelled test chemical.

Pärt (1990) developed a perfused gill preparation from rainbow trout
(*Oncorhynchus mykiss*) as an alternative for studies *in vivo*. The perfused gill allows
direct measurements of *in vivo* absorption rates of chemicals across the gill epithelium
(Pärt et al. 1992). Uptake rate constants of different classes of hydrophobic organic
chemicals determined in isolated perfused gills of rainbow trout (*O. mykiss*) are higher
than those determined in guppy (*Poecilia reticulata*) *in vivo* (Sijm et al. 1995). Both
systems show relatively high variation, however this can be significantly reduced and the

⁵¹⁵ uptake rate constants determined once they are normalised with a reference chemical.

516 Subsequent extrapolation to fish of different sizes can be through use of allometric

relationships (Sijm et al. 1995; Sijm et al. 1999; Hendriks et al. 2001; Hendriks and

518 Heikens 2001).

Reduced distribution. The concept of having a value relating a chemical's solubility in 519 octanol to reduced BCF/BAF is derived from 2 considerations. Firstly, that octanol is a 520 521 reasonable surrogate for fish lipids, and secondly, that if a substance has a reduced solubility in octanol this may result in a reduced BCF/BAF (and reduced or no effect to 522 the animal). The former forms the basis of the majority of models for predicting BCF 523 524 using log K_{ow}. When a substance has a low solubility in octanol (S_{oct}) as well as a low solubility in water (S_w) , the resulting ratio S_{oct}/S_w could range from very low to very high, 525 with no clear idea on how this would affect the magnitude of the BCF/BAF. Still, it could 526 be argued that a very low solubility in octanol could be used as an indication that only 527 low body burdens build up in an aquatic organism. 528

Chessells et al. (1992) demonstrated a decrease in lipid solubility with increasing K_{ow} values for highly hydrophobic compounds (log $K_{ow} > 6$). It was suggested that this led to reduced BCFs. Banerjee et al. (1991) demonstrated that by introducing a term for lowered octanol/lipid solubility into the calculated log K_{ow} BCF relationship, they could significantly improve the prediction of bioconcentration for highly hydrophobic chemicals. Experimental K_{ow} values already reflect the lower octanol solubility.

535 The meaningful implication of bioaccumulation is to identify the maximum 536 concentration(s) in organisms that would give rise to concern. The concept of critical

537	body burdens (CBB) for acute effects is reasonably well-established (McCarty et al.
538	1993; McCarty 1986) especially for chemicals that act via a narcosis mode of action.
539	Recent reviews of this concept (Barron et al. 1997, 2002; Sijm et al. 1999; Thompson et
540	al. 2003) can be summarised as follows:
541	• There are, still, very little data available, especially for specifically acting
542	chemicals and for chronic effects, upon which to make decisions relating to
543	generic CBBs;
544	• It is likely that much of the variability in CBBs can be explained by species
545	sensitivities, biotransformation, lipid content, the measurement of organ
546	versus whole body measurements and whether the chemical is correctly
547	assigned to a mode of action category;
548	• It is possible to identify ranges of CBB values for specific modes of action.
549	This is easier for narcosis type mode of actions, and becomes increasingly
550	prone to error moving towards more specifically acting chemicals.
551	Table 3 summarises 4 sources of information for CBBs, and when comparing the
552	expert judgement of Sijm to the ranges indicated and to the figures in the respective
553	publications, it is clear that the values chosen are in the median values of the ranges/data.
554	However, there is a lot of variability and therefore uncertainty in deciding on the actual
555	CBB value to use. Choosing the value of 0.001 mmol/kg ww (mid-point for respiratory
556	inhibitors) allows for approximate protection for all the modes of action with the
557	exception of the most toxic chemicals. The rationale for this would be that chemicals that
558	act by the lowest and most specific mode of action are very likely to be toxic (T) and

hence sufficiently bioaccumulative to be of immediate concern. The choice is thereforepragmatic but protective.

Lipid normalising the chosen CBB of 0.001 mmol/kg ww, and assuming a lipid content of 5%, gives a lipid normalised CBB of 0.02 mmol/kg lipid or 0.02 * Molecular weight mg/l lipid. However, given the uncertainty involved it is suggested to introduce an application factor of 10to account for species differences and organ versus body differences.

Based on the above it is proposed that where a chemical has a solubility of less than (0.002 * Molecular weight) mg/l in octanol it should be assumed that the compound has only a limited potential to establish high body burdens and to bioaccumulate. If it does bioaccumulate, it would be unlikely to give rise to levels in biota that would cause significant effects.

Increased elimination/depuration. De Wolf et al. (1992) demonstrated a 571 significant reduction in the bioconcentration of chlorinated anilines compared to log Kow-572 based predictions which was attributed to increased elimination via biotransformation. In 573 vitro assays can provide information on both the range of metabolites as well as their 574 relative importance, and provide data useful for input into fish-specific physiologically 575 based pharmacokinetic (PBPK) modelling efforts. Several types of studies are available 576 that assess the influence of biotransformation on the BCF in fish such as measuring the 577 decrease of parent compound (mass balance approach) (e.g. Opperhuizen 1986). 578 comparison of total elimination of biotransformable and non-biotransformable chemicals 579

580	with a similar K_{ow} (de Wolf et al. 1993a), and estimation of the <i>in vivo</i> biotransformation
581	rates from <i>in vitro</i> assays.

582	Biotransformation activity has been measured in fish liver, intestine, gill, kidney
583	and brain (Lindström-Seppä et al. 1981; Miller et al. 1989; Van Veld et al. 1990;
584	Hegelund et al. 2003). Since metabolism processes take place primarily in the liver, this
585	is the organ of choice to study the biotransformation of chemicals.
586	In vitro estimation of biotransformation potential. Biotransformation potential of
587	fish has been investigated in liver slices (Schmieder et al. 2000), whole liver
588	homogenates (de Wolf et al. 1993b), liver subfractions (Kolanczyk et al. 1999; Dyer et al.
589	2003; Perdu-Durand et al. 2004), isolated hepatocytes and cell lines (Cravedi et al. 2001;
590	Segner 1998; Segner et al. 2001; Dyer et al. 2004). The xenobiotic metabolite pattern
591	produced by fish hepatocytes in vitro is generally similar to that observed in vivo (Segner
592	et al. 2001).
593	Biotransformation is strongly taxa- and species-specific which may be due to
594	endogenous or exogenous factors (Sijm et al. 1997) Negligible biotransformation higher
595	up in the food chain implies a potential risk of biomagnification (Sijm et al. 1997). The
596	following types of compounds can be distinguished: a) compounds which are poorly

598 specific organisms/groups e.g. PAH in mussels, c) compounds which are easily

biotransformed as a general rule, b) compounds which are poorly biotransformed by

599 biotransformed across phyla.

597

600 The rate of biotransformation of chemicals through enzymatic reactions can be 601 monitored either by an increase in the activity of enzymes involved, by the decrease in

the amount of substrate (parent compound), or by an increase in products. The faster the rate of parent biotransformation the less likely it is that the chemical will bioaccumulate, with the influence of biotransformation on the overall elimination and BCF value more pronounced for hydrophobic chemicals (de Wolf et al. 1992). However, because of the lack of data there are no generally accepted approaches to use the *in vitro* rates to estimate potential BCFs. This is an area for further research.

608 Dyer et al. (2003) applied an approach to derive a BCF_{cell} for various surfactants using carp primary hepatocytes, and cultured hepatocytes (PLHC-1 cells). The rates of 609 uptake and loss of the test chemical from the cellular systems were estimated assuming 610 611 first order kinetics and the BCF in the cells determined by a ratio of uptake rate to the rate of loss. For LAS the calculated BCF_{cell} were approximately 4-fold less than the BCF_{fish} 612 measured by Tolls et al. (1997) in vivo in fathead minnow. For the linear alcohol 613 ethoxylate ($C_{13}EO_8$) the corresponding BCF_{cell} were 2 to 30-fold less compared to the 614 fathead minnow results generated by Tolls et al. (2000). 615

An advantage of *in vitro* methodologies for assessing biotransformation is that they are rapid and less expensive than *in vivo* tests. A compromise between conducting *in vivo* BCF testing and exposing liver systems would be to measure the same parameters in livers extracted from exposed fish. This may allow for a reduction in the number of fish used in assessing bioconcentration of a chemical, however this has not yet been investigated.

622

623 INTEGRATED BIOCONCENTRATION TESTING STRATEGY

We reviewed the current environmental regulatory testing strategies for 624 bioaccumulation and the alternative approaches that could provide (elements of) the 625 required information on bioconcentration. Based on this an integrated bioconcentration 626 testing strategy can be developed taking account of alternative approaches including 627 628 existing data (e.g. read-across and extrapolation), QSARs, in vitro and other techniques for implementing the 3Rs (Figure 1). The testing strategy developed is a tiered process; 629 Tier 1 uses estimation models and Tier 2 using non-animal experimental systems. 630 631 Depending upon the quality of the prediction, these tiers can lead to a replacement of animals used for assessing bioconcentration within environmental assessment. Tier 3 632 makes use of experimental systems but with a reduced number of animals. The full BCF 633 test performed according to OECD 305 is Tier 4 (the final step in the strategy). 634 Validation of alternative approaches from Tiers 1, 2 and 3 should include a comparison 635 of performance against results for the Tier 4 test. 636 Central to the strategy is the question "Is (refined) BCF suitable for purpose" 637 (Figure 2). The purpose of this question is to ensure that the BCF being generated is 638 either sufficiently accurate that an assessment of indirect exposure can be conducted or 639 that regulatory decisions can be made with sufficient confidence. Clearly the closer a 640 BCF estimate or measured value is to a boundary, either a regulatory defined criterion 641 (e.g. BCF > 5,000) or an indicator of risk (e.g. the predicted environmental concentration 642

to the no effect concentration (PEC/PNEC) = 1), the more confidence is needed that the

644 BCF is reasonably accurate. In making this judgement the variability that occurs even

646 *Tier 1*

A. The first part of the assessment addresses whether the substance has a potential for
restricted absorption. If unlikely to bioconcentrate, a surrogate or null BCF is
estimated. The assessor then moves to the central question regards suitability of the
estimate for its intended purpose.
If absorption does not seem to be restricted and biotransformation appears unlikely then

the second question asked is whether $\log K_{ow}$ is an appropriate model or surrogate for 652 describing the water-fish distribution process. In the case of metals and surfactants log 653 K_{ow} is not an appropriate model and one should immediately move to C. If log K_{ow} is 654 suitable, a measure of the octanol-water partition coefficient needs to be obtained. This 655 can be done by model estimation (ECETOC 2003) or measurement methods (ECETOC 656 1998). Next is to evaluate whether there is an applicable (Q)SAR that includes the 657 chemical in its domain. If yes, the log Kow value can be used as input into the (Q)SAR to 658 estimate the fish bioconcentration factor. 659

660 C. If $\log K_{ow}$ is not a suitable surrogate, but other approaches are (e.g. SPME), then 661 they should be used at this stage. Other options include SPMD, dialysis bags, and biotic 662 measurement systems (i.e. invertebrates). From this measurement an estimation of a fish 663 bioconcentration factor is obtained. The confidence in the information is again addressed 664 in the central question regards suitability of the estimate for its intended purpose. If there 665 are no good alternatives it is suggested that a screening BCF study be conducted (move to 666 Tier 3). 667 *Tier 2*

When a BCF has been estimated but there is significant uncertainty or not sufficient precision for the assessment, then go to point D below. However, in case there are no arguments for restricted uptake and no viable surrogates for partitioning behaviour then go to Tier 3.

D. The assessment at this point addresses to what extent biotransformation would 672 impact the elimination of the substance from fish and thus reduce an estimated 673 674 (maximum) BCF value. This can be approached by asking whether biotransformation 675 occurs in other species with potential similarity in biotransformation pattern, or whether other, structurally related substances are known to be biotransformed. If so, a measure of 676 677 biotransformation could be obtained either through the use of model estimations or in *vitro* measurements. In this way a refined BCF is obtained and the suitability of the new 678 value assessed. 679

680 *Tier 3*

When there are no arguments for restricted uptake and no viable surrogates for partitioning behaviour available then testing is required. It is suggested that a fish BCF is estimated using *in vivo* screening tests before moving to a BCF measurement using the OECD 305 test guideline (Tier 4). If the estimate from the *in vivo* screening assays is suitable for purpose then one can exit the bioconcentration testing strategy. If not, the OECD 305 test will need to be performed before the testing strategy can be exited.

687 *Tier 4*

688 Conduct the OECD 305 study.

689

690	CONCLUSIONS AND RECOMMENDATIONS
691	The European Union Technical Committee for New and Existing Substances (TC
692	NES) working group addressing persistent, bioaccumulative and toxic (PBT) substances
693	considered the recommendations on molecular properties leading to reduced absorption
694	and the influence of octanol solubility on distribution. They agreed to use them as part of
695	their strategy of determining whether a chemical should be placed on a screening list
696	and/or should be tested to determine whether it is B/vB. The criteria should be considered
697	in a weight of evidence approach with other information, e.g. data derived from
698	mammalian studies.
699	Several research needs can be identified upon further examination of the decision-
700	tree proposed as a possible bioconcentration testing strategy (Figure 2). The use of
701	relevant existing information on biotransformation can be considered a viable alternative
702	replacing animals. Reduction measures, while still making use of a limited number of
703	fish, can already be applied or may need rapid development for short-term application. In
704	the mid to longer term, research programmes will be needed to enable the replacement
705	tests to be fully accepted and implemented.
706	The domain of application of the standard in vivo bioconcentration test (OECD
707	305) should be more clearly defined. The uncertainties in the measurements obtained
708	after conducting a standard in vivo bioconcentration test should be better assessed,

709 without which the successful validation of alternatives methods to the fish

510 bioconcentration test would be compromised. A database holding peer reviewed high

711 quality BCF data, a "BCF Gold Standard Database" is under development and will

- become a valuable resource for future development of alternative tests. The use of only 1
 concentration or limited uptake/depuration phases should be evaluated and implemented
 for relevant chemical classes.
- Other *in vivo* experimental approaches, e.g. the dietary accumulation protocol and abbreviated OECD 305 need to be investigated further to define their limits of applicability and eventually extend their domain. In addition, the assumptions regarding rates of uptake need to be confirmed and their limitations understood.

To better address the value of *in vitro* assays and their suitability for amending 719 BCFs, additional research is needed to identify their variability and confidence limits. 720 Research into the use of decision theory methods may also help by allowing for a better 721 722 assessment of the uncertainty inherent in these techniques. Also some technical issues need to be addressed to better understand the use of *in vitro* methods. For the purpose of 723 standardising protocols, recommended procedures for the isolation of fish cells, culture 724 725 and exposure should be agreed and should be in compliance with the Good Cell Culture Practices. The development of *in vitro* assays, expert systems and models capable of 726 incorporating ADME concepts should receive priority. 727

Absorption. The parameters governing physical restriction of cellular absorption of chemicals should be better described and the assumed constant rate of uptake, up to $\log K_{ow}$ 6, needs to be further investigated. Furthermore the applicability of using *in vitro* systems to assess absorption should be studied. The first step could be to evaluate whether the mammalian intestinal cells (Caco-2 cells) are representative of fish for understanding gill absorption, uptake from food and deriving assimilation factors. Future

734	research is needed to further assess the impact of gill biotransformation in the absorption
735	process. In addition, generation of information that provides more insight into the validity
736	of extrapolation from existing approaches to fish and/or the development of fish specific
737	absorption models is required.
738	Distribution and partitioning. The applicability domain of (Q)SARs for log
739	K_{ow}/BCF predictions should be better defined. Research into the conditions of use of
740	SPMD/SPME, within the context of the strategy outlined above, should be performed.
741	Their limitations and potential, for assessing poorly metabolisable chemicals and in
742	whole effluent assessment/environmental monitoring, should be explored.
743	Biotransformation. The use of available biodegradation data and
744	metabolism/biotransformation data from mammalian studies should be considered before
745	conducting any fish bioconcentration test. In order to ensure that extrapolation can be
746	done, a literature research study should capture differences and similarities between the
747	various classes. Bacteria, invertebrates and vertebrates are capable of chemical
748	biotransformation, but to various extents, and may be using various metabolic pathways.
749	The knowledge of biotransformation patterns and extent in diverse phyla may help
750	understand bioconcentration processes in fish (Sijm et al. 1997).
751	The existing (Q)SARs which address biotransformation in fish need to be
752	improved or further developed. The available in vitro biotransformation assays with
753	sub/cellular fish liver systems to address metabolism should be further investigated. In
754	order to allow the use of relevant information, the level of biotransformation potential in
755	the different in vitro systems, using different fish species or classes of organisms, should

be compared. The level of biotransformation potential *in vitro* should be compared to the
level of biotransformation *in vivo*.

There are a number of issues in relation to the extrapolation from *in vitro* to *in* 758 vivo for deriving a BCF. Ultimately it should be possible to relate, for example, the level 759 of parent disappearance in microsomes with a factor that would refine the estimated 760 BCF_{fish}, or a BCF_{cell} to BCF_{fish}. It is not yet obvious how absorption and metabolism in 761 mammals relate to absorption and metabolism in fish. Another inherent difficulty of in 762 763 *vitro* studies is the relation between responses in single cells to responses/effects in whole organisms. This is true for toxicological responses as well as for biotransformation 764 765 processes. The acceptability of *in vitro* data could be enhanced provided that parallel studies are conducted *in vivo*, for example by comparing the level of enzymatic activity 766 in the livers of exposed fish to that in exposed liver cells. This could also be used as a 767 768 refinement and reduction of the number of fish used to assess fish bioconcentration.

769 In summary, it is clear when addressing the use of fish for the environmental safety of chemical products there are many opportunities for applying the principles of 770 the 3Rs: Reduce, Refine and Replace. The current environmental regulatory testing 771 strategy for bioconcentration and secondary poisoning can be significantly improved by 772 use of alternative approaches that provide (elements of) the required information. We 773 774 developed an Integrated Testing Strategy for bioconcentration assessment that can be applied in a regulatory context and takes into account these alternative information 775 776 methodologies.

Integrated Testing Bioconcentration

777	Acknowledgements. The authors would like to thank the members of the EU
778	Technical Committee Working Group on PBT-substances, specifically Steve Robertson.
779	

780 **REFERENCES**

- Anliker R, Moser P. 1987. The limits of bioaccumulation of organic pigments in
 fish: Their relation to the partition coefficient and the solubility in water and octanol. *Ecotox Environ Saf* 13:43-52.
- 784 Anliker R, Moser P, Poppinger D. 1988. Bioaccumulation of dyestuffs and

785 organic pigments in fish. Relationships to hydrophobicity and steric factors.

786 *Chemosphere* 17:1631-1644.

787	Anonymous. 2004. Fish, dietary bioaccumulation study protocol, based on a
788	version adapted by the TC NES subgroup on PBTs of the original protocol developed for
789	and used by ExxonMobil Biomedical Sciences, Inc (EMBSI).
790	Arnot J, Gobas FAPC. 2003. A generic QSAR for assessing the bioaccumulation
791	potential of organic chemicals in aquatic food webs. Quant. StructAct. Realt. 22: 1-9.

- Arthur CL, Pawliszyn J. 1990, Solid phase microextraction with thermal
- desorption using fused silica optical fibers. *Anal Chem* 62:2145-2148.
- Artursson P, Palm K, Luthman K. 1996. Caco-2 monolayers in experimental and
- theoretical predictions of drug transport. *Advanced Drug Delivery Reviews* 22:67-84.

796	Bailey CA, Bryla P, Malick AW. 1996. The use of the intestinal epithelial cell
797	culture model, Caco-2, in pharmaceutical development. Advanced Drug Delivery Reviews
798	22:85-103.
799	Banerjee S, Baughman GL. 1991. Bioconcentration factors and lipid solubility.
800	Environ Sci Technol 25:536-539.
801	Banerjee S, Sugatt RH, O'Grady DP. 1984. A simple method for determining
802	bioconcentration parameters of hydrophobic compounds. Environ Sci Technol 18:79-81.
803	Barron MG, Anderson MJ, Lipton J, Dixon DG. 1997. Evaluation of critical body
804	residue QSARs for predicting organic chemical toxicity to aquatic organisms. SAR QSAR
805	Environ Res 6:47-62.
806	Barron MG, Hansen JA, Lipton J. 2002. Association between contaminant tissue
807	residues and effects in aquatic organisms. Reviews of Environmental Contamination and
808	Toxicology 173:1-37.
809	Beek B. 1991. Welcome address and introduction. In: Nagel R, Loskill R, editors,
810	Bioaccumulation in aquatic systems. Weinheim, Germany: VCH Verlagsgesellschaft
811	mbH, p 1-6.
812	Booij K, Sleiderink HM, Smedes F. 1998. Calibrating the uptake kinetics of
813	semipermeable membrane devices using the exposure standards. Environ Toxicol Chem
814	17:1236-1245.
815	Borchardt RT, Smith PL, Wilson G, editors. 1996. Models for assessing drug
816	absorption and metabolism. New York (NY), USA: Plenum Press.

817	Burreau S, Zebuhr Y, Broman D, Ishaq R. 2004. Biomagnification of
818	polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) studies
819	in pike (Esox lucius), perch (Perca fluviatilis) and roach (Rutilus rutilus) from the Baltic
820	Sea. <i>Chemosphere</i> 55:1043-1052.
821	CEPA. 1999. Persistence and Bioaccumulation Regulations (SOR/2000-107).
822	Canada Gazette134:607-612.
823	Chessells M, Hawker DW, Connell DW. 1992. Influence of solubility in lipid on
824	bioconcentration of hydrophobic compounds. Ecotox Environ Saf 23:260-273.
825	Connell DW, Hawker DW. 1988. Use of polynomial expressions to describe the
826	bioconcentration of hydrophobic chemicals by fish. Ecotox Environ Saf 16:242-257.
827	Cravedi JP, Boudry G, Baradat M, Rao D, Debrauwer L. 2001. Metabolic fate of
828	2,4-dichloroaniline, prochloraz and nonylphenol diethoxylate in rainbow trout: a
829	comparative in vivo / in vitro approach. Aquat Toxicol 53:159-172.
830	de Wolf W, Lieder PH. 1995. Analysis of the static exposure system to study
831	biotransformation and bioconcentration kinetics in aquatic organisms. Toxicology
832	Modeling 1:99-110.
833	de Wolf W, Lieder PH. 1998. A novel method to determine uptake and
834	elimination kinetics in fish of volatile chemicals. Chemosphere 36:1713-1724.
835	de Wolf W, de Bruijn JHM, Seinen W, Hermens JLM. 1992. Influence of
836	biotransformation on the relationship between bioconcentration factors and octanol-water
837	partition coefficients. Environ Sci Technol 26:1197-1201.

838	de Wolf W, Seinen W, Hermens JLM. 1993a. Biotransformation and
839	toxicokinetics of trichloroanilines in fish in relation to their hydrophobicity. Arch Environ
840	Contam Toxicol 25:110-117.
841	de Wolf W, Seinen W, Hermens JLM. 1993b. N-acetyltransferase activity in
842	rainbow trout liver and the in vitro biotransformation of chlorinated anilines and
843	benzenes in fish. Xenobiotica 23:1045-1056.
844	DGEE. 2003. Directorates General Enterprise and Environment. The new EU
845	chemicals legislation REACH. DG Enterprise, Brussels, Belgium.
846	(www.europa.eu.int/comm/enterprise/reach/index_en.htm).
847	Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG. 2002.
848	Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of
849	molecular size. Pure Appl Chem 74:1823-1830.
850	Dimitrov SD, Mekenyan OG, Walker JD. 2002. Non-linear modeling of
851	bioconcentration using partition coefficients for narcotic chemicals. SAR QSAR Environ
852	<i>Res</i> 13:177-184.
853	Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG. 2003.
854	Bioconcentration potential predictions based on molecular attributes - an early warning
855	approach for chemicals found in humans, birds, fish and wildlife. QSAR Comb Sci 22:58-
856	68.

857	Dimitrov SD, Dimitrova NC, Parkerton T, Comber MHI, Bonnell M, Mekenyan
858	OG. 2006. Baseline model for identifying the bioaccumulation potential of chemicals.
859	SAR QSAR Environ Res Accepted for publication.
860	Dyer SD, Bernhard M. 2004. Follow up to feasibility study on in vitro
861	biotransformations systems: Determination of uptake, loss and bioconcentration of two
862	surfactants. ERASM report, 35 p. www.erasm.org/study.htm
863	Dyer SD, Bernhard MJ, Versteeg DJ. 2003. Identification of an in vitro method
864	for estimating the bioconcentration of surfactants in fish. In ERASM final report.
865	Brussels, Belgium, p 1-66. www.erasm.org/study.htm
866	EC. 2003. 2nd edition of the Technical Guidance Document in support of
867	Commission Directive 93/67/EEC on Risk Assessment for new notified substances,
868	Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances
869	and Directive 98/8/EC of the European Parliament and of the Council concerning the
870	placing of biocidal products on the market. Office for Official Publications of the
871	European Communities, Luxembourg.
872	ECETOC. 1995. The role of bioaccumulation in environmental risk assessment:
873	the aquatic environment and related foodwebs. Technical Report No 67. European Centre
874	for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.
875	ECETOC. 1998. QSARs in the assessment of the environmental fate and effects
876	of chemicals. Technical Report No 74. European Centre for Ecotoxicology and
877	Toxicology of Chemicals, Brussels, Belgium.

878	ECETOC. 2003. QSARs: evaluation of the commercially available software for
879	human health and environmental endpoints with respect to chemical management
880	applications. Technical Report No 89. European Centre for Ecotoxicology and
881	Toxicology of Chemicals, Brussels, Belgium.
882	ECETOC. 2005. Alternative testing approaches in environmental safety
883	assessment. Technical Report No. 97. European Centre for Ecotoxicology and
884	Toxicology of Chemicals, Brussels, Belgium.
885	EEC. 1986. Council Directive 86/609/EEC of 24 November 1986 on the
886	approximation of laws, regulations and administrative provisions of the Member States
887	regarding the protection of animals used for experimental and other scientific purposes.
888	Official Journal of the European Communities L 358.
889	Environment Canada. 2003. Guidance manual for the categorization of organic
890	and inorganic substances on Canada's Domestic Substances List: Determining
891	persistence, bioaccumulation potential, and inherent toxicity to non-human organisms.
892	Existing Substances Branch. June. (http://www.ec.gc.ca/substances/ese/eng/dsl/cat_index.cfm)
893	Gobas FAPC, Mackay D. 1987. Dynamics of hydrophobic organic chemical
894	bioconcentration in fish. Environ Toxicol Chem 6:495-504.
895	Hardy R, Mackie PR, Whittle KJ, McIntyre AD. 1974. Discrimination in the
896	assimilation of <i>n</i> -alkanes in fish. <i>Nature</i> 252:577-578.
897	Hawker DW, Connell DW. 1988. Influence of partition coefficient of lipophilic
898	compounds on bioconcentration kinetics with fish. Wat Res 22:701-707.

899	Hegelund T, Celander MC. 2003. Hepatic versus extrahepatic expression of
900	CYP3A30 and CYP3A56 in adult killifish (Fundulus heteroclitus). Aquat Toxicol 64:277-
901	291.
902	Hendriks JA, Heikens A. 2001. The power of size. 2. Rate constants and
903	equilibrium ratios for accumulation of inorganic substances related to species weight.
904	Environ Toxicol Chem 20:1421-1437.
905	Hendriks JA, van der Linde A, Cornelissen G, Sijm DTHM. 2001. The power of
906	size. 1. Rate constants and equilibrium ratios for accumulation of organic substances
907	related to octanol-water partition ratio and species weight. Environ Toxicol Chem
908	20:1399-1420.
909	Hidalgo IJ, Li J. 1996. Carrier-mediated transport and efflux mechanisms in
910	Caco-2 cells. Advanced Drug Delivery Reviews 22:53-66.
911	Hinderleiter P. 2004. Haskell Laboratories (DE), USA. Personal communication.
912	Hodgeson E, Levi PE. 1994. Introduction to biochemical toxicology. Norwalk,
913	(CT), USA: Appleton and Lange, p 11-48; 75-131; 177-192.
914	Huckins JN, Petty JD, Thomas J. 1997. Bioaccumulation: How chemicals move
915	from the water into fish and other aquatic organisms. Health and Sciences Dept., API
916	Publication Number 4656. API, Washington (DC), USA.
917	IEH. 2001. Testing requirements for proposals under the EC white paper Strategy
918	for a future chemicals policy (Web report W6). Institute for Environment and Health,
919	Leicester, UK. www.le.ac.uk/ieh/webpub/webpub.html (posted July 2001).

920	Kolanczyk R, Schmieder P, Bradbury S, Spizzo T. 1999. Biotransformation of 4-
921	methoxyphenol in rainbow trout (Oncorhynchus mykiss) hepatic microsomes. Aquat
922	<i>Toxicol</i> 45:47-61.
923	Kristensen P, Tyle H. 1991. The assessment of bioaccumulation. In: Nagel R,
924	Loskill R, editors, Bioaccumulation in aquatic systems. Weinheim, Germany: VCH
925	Verlagsgesellschaft mbH, p 189-227.
926	Leslie HA, Ter Laak TL, Busser FJM, Kraak MHS, Hermens JLM. 2002.
927	Bioconcentration of organic chemicals: Is a solid-phase microextraction fiber a good
928	surrogate for biota? Environ Sci Technol 36:5399-5404.
929	Lindström-Seppä P, Koivusaari U, Hanninen O. 1981. Extrahepatic xenobiotic
930	metabolism in North-European freshwater fish. Comp Biochem Physiol 69C:259-263.
931	Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and
932	computational approaches to estimate solubility and permeability in drug discovery and
933	development settings. Advanced Drug Delivery Reviews 23:3-25.
934	Loonen H, Tonkes M, Parsons JR, Govers HAJ. 1994. Bioconcentration of
935	polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in guppies after
936	aqueous exposure to a complex PCDD/PCDF mixture: Relationship with molecular
937	structure. Aquat Toxicol 30:153-169.
938	Mayer P, Tolls J, Hermens JLM, Mackay D. 2003. Equilibrium sampling devices
939	Environ Sci Technol 37:184A-191A

940	McCarty LS. 1986. The relationship between aquatic toxicity QSARs and
941	bioconcentration for some organic chemicals. Environ Toxicol Chem 5:1071-1080.
942	McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and
943	assessment. Environ Sci Technol 27:1719-1728.
944	Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouchie S.
945	1999. Improved method for estimating bioconcentration/bioaccumulation factor from
946	octanol/water partition coefficient. Environ Toxicol Chem 18:664-672.
947	Miller MR, Hinton DE, Stegeman JJ. 1989. Cytochrome P-450 induction and
948	localization in gill pillar (endothelial) cells of scup and rainbow trout. Aquat Toxicol
949	14:307-322.
950	Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C, Leonards
951	PEG, Van Leeuwen SPJ, De Boer J. 2004. Distribution and fate of HBCD and TBBPA
952	brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci
952 953	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci Technol</i> 38:5497-5504.
952 953 954	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci</i> <i>Technol</i> 38:5497-5504. Nendza M. 1991. QSARs of bioconcentration: validity assessment of
952 953 954 955	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci</i> <i>Technol</i> 38:5497-5504. Nendza M. 1991. QSARs of bioconcentration: validity assessment of log P _{ow} /log BCF correlations. In: Nagel R, Loskill R, editors, Bioaccumulation in aquatic
952 953 954 955 956	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci</i> <i>Technol</i> 38:5497-5504. Nendza M. 1991. QSARs of bioconcentration: validity assessment of log P _{ow} /log BCF correlations. In: Nagel R, Loskill R, editors, Bioaccumulation in aquatic systems. Weinheim, Germany: VCH-Verlagsgesellschaft.
 952 953 954 955 956 957 	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci</i> <i>Technol</i> 38:5497-5504. Nendza M. 1991. QSARs of bioconcentration: validity assessment of log P _{ow} /log BCF correlations. In: Nagel R, Loskill R, editors, Bioaccumulation in aquatic systems. Weinheim, Germany: VCH-Verlagsgesellschaft. OECD. 1996a. Final report of the OECD workshop on harmonization of
 952 953 954 955 956 957 958 	brominated flame retardants in North Sea estuaries and aquatic food webs. <i>Environ Sci</i> <i>Technol</i> 38:5497-5504. Nendza M. 1991. QSARs of bioconcentration: validity assessment of log P _{ow} /log BCF correlations. In: Nagel R, Loskill R, editors, Bioaccumulation in aquatic systems. Weinheim, Germany: VCH-Verlagsgesellschaft. OECD. 1996a. Final report of the OECD workshop on harmonization of validation and acceptance criteria for alternative toxicological test methods. Organisation

Integrated Testing Bioconcentration

960	OECD. 1996b. OECD guidelines for testing of chemicals. 305. Bioconcentration:
961	Flow-through fish test, last updated 14 th June 1996. Organisation for Economic Co-
962	operation and Development, Paris, France.
963	OECD. 2001a. OECD guidelines for testing of chemicals. 420. Acute oral toxicity
964	- fixed dose procedure, last updated 17 th December 2001. Organisation for Economic Co-
965	operation and Development, Paris, France.
966	OECD. 2001b. OECD guidelines for testing of chemicals. 423. Acute oral toxicity
967	- acute toxic class method, last updated 17 th December 2001. Organisation for Economic
968	Co-operation and Development, Paris, France.
969	OECD. 2001c. OECD guidelines for testing of chemicals. 425. Acute oral
970	toxicity: Up and down procedure, last updated 17 th December 2001. Organisation for
971	Economic Co-operation and Development, Paris, France.
972	OECD. 2004. OECD guideline for the testing of chemicals, draft proposal for a
973	new guideline (No. 435, 1st Version), in vitro membrane barrier test method for skin
974	corrosion. Organisation for Economic Co-operation and Development, Paris, France.
975	Okada Y, Irimajiri A, Inouye A. 1977. Electrical properties and active solute
976	transport in rat small intestine. II. Conductive properties of transepithelial routes. J
977	Membr Biol 31:221-232.
978	Opperhuizen A. 1986. Bioconcentration of hydrophobic chemicals in fish. In:
979	Poston TM, Purdy R, editors, Aquatic toxicology and environmental fate, Vol 9,

980	STP 921. Philadelphia, USA: American Society for Testing and Materials (ASTM),
981	p 304-315.

Opperhuizen A, Sijm DTHM. 1990. Bioaccumulation and biotransformation of
polychlorinated dibenzo-p-dioxins and dibenzofurans in fish. *Environ Toxicol Chem*984 9:175-186.

985	Opperhuizen A, Van der Velde EW, Gobas FAPC, Liem DAK, Van der Steen
986	JMD. 1985. Relationship between bioconcentration in fish and steric factors of
987	hydrophobic chemicals. Chemosphere 14:1871-1896.

988 Opperhuizen A, Damen HWJ, Asyee GM, van der Steen JMD, Hutzinger O.

1987. Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary
and aqueous exposure. *Toxicol Environ Chem* 13:265-285.

- 991 Parkerton T, Letinski D, Febbo E, Davi R, Dzamba C, Connelly M, Christensen
- 992 K, Peterson D. 2001. A practical testing approach for assessing bioaccumulation potential
- of poorly water soluble organic chemicals. Presentation at SETAC Europe, May 7-10,
- 994 2001, Madrid, Spain.
- Pärt P. 1990. The perfused fish gill preparation in studies of the bioavailability of
 chemicals. *Ecotox Environ Saf* 19:106-115.
- Pärt P, Saarikoski J, Tuurala H, Havaste K. 1992. The absorption of hydrophobic
 chemicals across perfused rainbow trout gills: methodological aspects. *Ecotox Environ Saf* 24:275-286.

1000	Pedersen F, de Bruijn J, Munn S, van Leeuwen CJ. 2003. Assessment of
1001	additional testing needs under REACH: Effects of (Q)SARs, risk based testing and
1002	voluntary initiatives. IHCP, DG JRC, Ispra, Italy, 33 p.
1003	Perdu-Durand E, Demmerle S, Cravedi JP. 2004. In vitro biotransformation rates
1004	of surfactants in carp and rainbow trout liver subcellular fractions. ERASM report, 28 p.
1005	www.erasm.org
1006	Potts RO, Guy RH, eds. 1997. Mechanisms of transdermal drug delivery. Marcel
1007	Dekker, New York, NY, USA.
1008	Proudfoot JR. 2005. The evolution of synthetic oral drug properties. <i>Bioorganic</i>
1009	and Medicinal Chemistry Letters 15:1087-1090.
1010	Rekker RF, Mannhold R. 1992. Calculation of drug lipophilicity. Weinheim,
1011	Germany: VCH. (Cited at <u>www.voeding.tno.nl/ProductSheet.cfm?PNR=037e</u>)
1012	Russell WMS, Burch RL. 1959. The principles of humane experimental
1013	technique. London, UK: Methuen.
1014	Schmieder P, Tapper M, Linnum A, Denny J, Kolanczyk R, Johnson R. 2000.
1015	Optimization of a precision-cut trout liver tissue slice assay as a screen for vitellogenin
1016	induction: comparison of slice incubation techniques. Aquat Toxicol 49:251-268.
1017	Schrap SM, Opperhuizen A. 1990. Relationship between bioavailability and
1018	hydrophobicity: Reduction of the uptake of organic chemicals by fish due to the sorption
1019	on particles. Env Toxicol Chem 9:715-724.

1020	Segner H, Cravedi J. 2001. Metabolic activity in primary cultures of fish
1021	hepatocytes. ATLA 29:251-257.
1022	Segner H. 1998. Isolation and primary culture of teleosts hepatocytes. Comp
1023	Biochem Physiol Part A 120:71-81.
1024	Sijm DTHM. 2004. Personal communication to some members of the TCNES
1025	sub-group on PBTs.
1026	Sijm DTHM, Hermens JLM. 1999. Internal effect concentrations: Link between
1027	bioaccumulation and ecotoxicity for organic chemicals. In: Beek B, editor, The handbook
1028	of environmental chemistry, Vol 2-J. Bioaccumulation: new aspects and developments.
1029	Berlin, Germany: Springer-Verlag, p 167-199.
1030	Sijm DTHM, Wever H, Opperhuizen A. 1993. Congener-specific
1031	biotransformations and bioaccumulation of PCDDs and PCDFs from fly ash in fish.
1032	Environ Toxicol Chem 12:1895-1907.
1033	Sijm DTHM, Verberne ME, de Jonge WJ, Pärt P, Opperhuizen A. 1995.
1034	Allometry in the uptake of hydrophobic chemicals determined in vivo and in isolated
1035	perfused gills. Toxicol Appl Pharmacol 131:130-135.
1036	Sijm DTHM, de Bruijn J, de Voogt P, de Wolf W, eds. 1997. Biotransformation
1037	in environmental risk assessment. SETAC Europe, Brussels, Belgium.
1038	Sijm DTHM. 1991. Extrapolating the laboratory results to environmental
1039	conditions. In: Nagel R, Loskill R, editors, Bioaccumulation in aquatic systems.
1040	Weinheim, Germany: VCH Verlagsgesellschaft, p 151-160.

1041	Sinko PJ, Lee YH, Makhey V, Leesman GD, Sutyak JP, Yu H, Perry B, Smith
1042	CL, Hu P, Wagner EJ, Falzone LM, McWhorter LT, Gilligan JP, Stern W. 1999.
1043	Biopharmaceutical approaches for developing and assessing oral peptide delivery
1044	strategies and systems: in vitro permeability and in vivo oral absorption of salmon
1045	calcitonin (sCT). Pharm Res 16:527-533.
1046	Södergren A. 1987. Solvent-filled dialysis membranes simulate uptake of
1047	pollutants by aquatic organisms. Environ Sci Technol 21:855-859.
1048	Thompson RS, Stewart KM. 2003. Critical Body Burdens: A review of the
1049	literature and identification of experimental data requirements. BL7549/B, Brixham
1050	Environmental Laboratory, AstraZeneca Ltd, Brixham (Devon), UK.
1051	Tolls J, de Graaf I, Thijssen MATC, Haller M, Sijm DTHM. 1997.
1052	Bioconcentration of LAS: Experimental determination and extrapolation to
1053	environmental mixtures. Environ Sci Technol 31:3426-3431.
1054	Tolls J, Haller M, Labee E, Verweij M, Sijm DTHM. 2000. Experimental
1055	determination of bioconcentration of the nonionic surfactant alcohol ethoxylated. Environ
1056	<i>Toxicol Chem</i> 19:646-653.
1057	Trischitta F, Denaro MG, Faggio C. 1999. Effects of acetylcholine, serotonin and
1058	noradrenalin on ion transport in the middle and posterior part of Anguilla anguilla
1059	intestine. J Comp Physiol B 169:370-376.
1060	UK. 1986. Guidance on the Operation of the Animals (Scientific Procedures) Act
1061	1986, Presented to Parliament by the Secretary of State for the Home Department

1062	pursuant to Act Eliz. II 1986, C.14 Section 21, (Animals (Scientific Procedures) Act
1063	1986). Ordered to be printed by the House of Commons, 23 March 2000.
1064	UK. 1993. Statutory Instrument 1993 No. 2103, The Animals (Scientific
1065	Procedures) Act (Amendment) Order 1993. London, UK: The Stationery Office Limited.
1066	UN. 2003. The globally harmonized system of classification and labelling of
1067	chemicals. UNECE (United Nations Economic Commission for Europe), Geneva,
1068	Switzerland. Available at <u>www.unece.org/trans/danger/publi/ghs/ghs_rev00/00files_e.html</u>
1069	USA. 1966. Animal Welfare Act, Public Law 89-544 Act of August 24, 1966,
1070	89th Congress, H. R. 13881, Act enabled 1966 and updated 1970, 1976, 1985, 1990.
1071	Annual updates available at <u>www.aphis.usda.gov/ac/publications.html</u>
1072	US EPA. 1999. Category for persistent, bioaccumulative and toxic new chemical
1073	substances. Feb Reg 64:60194-60204. United States Environment Protection Agency,
1074	Office of Research and Development, Washington (DC), USA.
1075	Vaes WHJ, Hamwijk C, Urrestarazu Ramos E, Verhaar HJM, Hermens JLM.
1076	1996. Partitioning of organic chemicals to polyacrylate-coated solid phase
1077	microextraction fibers: Kinetic behavior and quantitative structure-property relationships.
1078	Anal Chem 68:4458-4462.
1079	Vaes WHJ, Urrestarazu Ramos E, Hamwijk C, van Holsteijn I, Blaauboer BJ,
1080	Seinen W, Verhaar HJM, Hermens JLM. 1997. Solid phase microextraction as a tool to
1081	determine membrane/water partition coefficients and bioavailable concentrations in in
1082	vitro systems. Chem Res Toxicol 10:1067-1072.

1083	Van Veld PA, Westbrook DJ, Woodin BR, Hale RC, Smith CL, Huggett RJ,
1084	Stegeman JJ. 1990. Induced cytochrome P-450 in intestine and liver of spot (Leiostomus
1085	xanthurus) from a polycyclic aromatic hydrocarbon contaminated environment. Aquat
1086	<i>Toxicol</i> 17:119-132.
1087	Van Wezel AP, Opperhuizen A. 1995. Narcosis due to environmental pollutants
1088	in aquatic organisms: residue-based toxicity mechanisms and membrane burdens. Critical
1089	Reviews in Toxicology 25:255-279.
1090	Veith GD, DeFoe DL, Bergstedt BV. 1979. Measuring and estimating the
1091	bioconcentration factor of chemicals in fish. J Fish Res Board Can 36:1040-1048.
1092	Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, Durst GL,
1093	Hipskind PA. 2004. Characteristic physical properties and structural fragments of
1094	marketed oral drugs. J Med Chem 47:224-232.
1095	Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. 2003. A comparison
1096	of physiochemical property profiles of development and marketed oral drugs. J Med
1097	<i>Chem</i> 46:1250-1256.
1098	Wood C, Pärt P. 1997. Cultured branchial epithelia from freshwater fish gills. J
1099	<i>Exp Biol</i> 200:1047-1059.
1100	Wood CM, Kelly SP, Zhou B, Fletcher M, O'Donnell M, Eletti B, Pärt P. 2002.
1101	Cultured gill epithelia as models for the freshwater fish gill. Biochim Biophys Acta -
1102	Biomembranes 1566:72-83.

Integrated Testing Bioconcentration

Page 52

1103 List of Tables and Figures:

1104

- 1105 Table 1: Minimum number of fish sampled in a bioconcentration test
- 1106 *Table 2: Tissue absorption potentials*
- 1107 *Table 3: Summary of various ranges re CBB lethality (mmol/kg ww)*

1108

- 1109 Figure 1: Tiered approach to assess fish bioconcentration
- 1110 Figure 2: Integrated testing strategy to assess fish bioconcentration

Table 1: Minimum number of	fish sampled in a bioconcentration test
----------------------------	---

OECD 305 bioconcentration: flow-through tes	t (OECD 1	996b)				
		Uptake pha	ase	Depuration	phase	Total
Number of fish per sampling occasion		4		4		
Number of sampling occasions		5		4		
	Subtotal		20	•	16	
Number of exposure and control groups	Subtatal	3	60	3	10	
	Subtotal		60		40	108
Abbreviated OECD 305 study (Hinderleiter 20	004)					
		Uptake pha	ase	Depuration	phase	Total
Number of fish per sampling occasion		4		4		
Number of sampling occasions	0 1 1 1 1 1	2	~	4	10	
Number of evenesure and control groups	Subtotal	2	8	2	16	
Number of exposure and control groups	Subtotal	2	16	2	32	
	Subiolai		10		52	48
Static bioaccumulation study (Banerjee et al.	1984; de V	Volf et al. 19	998)			
		Uptake pha	ase	Depuration	phase	Total
Number of fish per sampling occasion		10		0		
Number of sampling occasions		1		0		
Number of evenesure and control evenes	Subtotal	0	10	0	0	
number of exposure and control groups	Subtotal	2	20	0	0	
	Subiolai		20		0	20
Dietary bioaccumulation study (Parkerton et a	al. 2001)					
		Uptake pha	ase	Depuration	phase	Total
Number of fish per sampling occasion		0		4		
Number of sampling occasions	0.444	0	~	5		
Number of evenesure and central groups	Subtotal	0	0	0	20	
number of exposure and control groups	Subtatal	U	Δ	Z	10	
	Subioial		0		40	
			-			40

Table 2: Tissue absorption potentials

Tissue	TEER in Ω cm2	References
Fish intestine	25-50	Trischitta et al. (1999)
Mammal intestine	20-100	Okada et al. (1977); Sinko et al. (1999)
Blood-brain barrier	400-2000	Borchardt et al. (1996)
Fish gill	3500	Wood et al. (1997)
Human skin	20,000	Potts et al. (1997)

Table 3: Summary of various ranges re CBB - lethality (mmol/kg ww)

Mode of action and source	Narcosis	AChE inhibitors	Respiratory inhibitors
Sijm (2004)	2	0.01	0.001
Thompson et al. (2003)	2 - 8	0.000001 - 10	0.000001 - 10
Barron et al. (2002)	0.03 - 450	0.00004 - 29	0.00002 - 1.1 (CNS seizure agents)
McCarty et al. (1993)	1.7 - 8	0.05 - 2.7	0.00005 - 0.02 (CNS seizure agents)

Sijm (2004) - an expert judgement view to arrive at an approximate single value based on 3 references(McCarty et al. 1993; Van Wezel et al. 1995; Sijm et al. 2000).

Thompson et al. (2003) - based on a literature review, the data range, beyond the narcosis mode of action, has been drawn from this report.

Barron et al. (2002) - based on Fig. 10 of Barron et al. (2002).

REPLACEMENT

Tier I: a) Physico-chemical analyses; literature search No animals used b) Computer models to estimate ADME properties and BCF Tier II: In vitro assays to evaluate ADME properties REDUCTION Tier III: Fewer animals used Modified in vivo methods to measure bioconcentration Tier IV: 108 animals used Gold standard OECD TG 305

