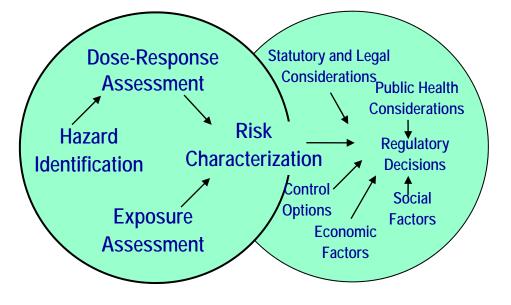


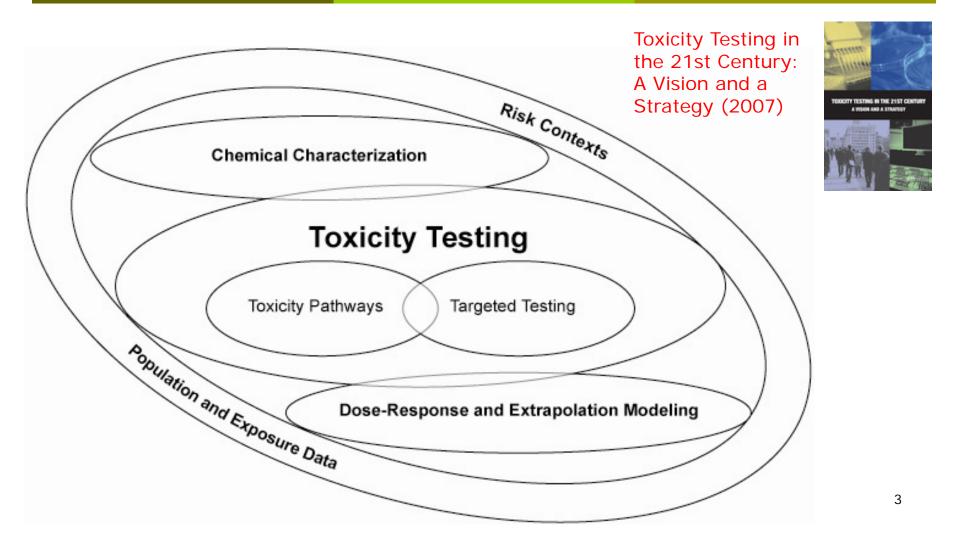
Current Strategies in Assessing Genotoxic Risk

Kerry L. Dearfield, Ph.D. Scientific Advisor for Risk Assessment Office of Public Health Science Food Safety and Inspection Service U.S. Department of Agriculture


Presented at the HESI Annual Meeting May 12, 2010

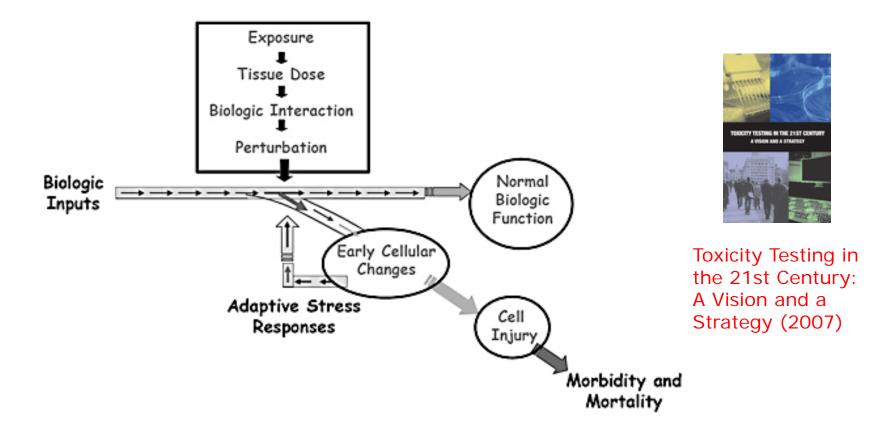
NRC Risk Assessment Paradigm

Risk Assessment



Risk Management

National Research Council, 1983

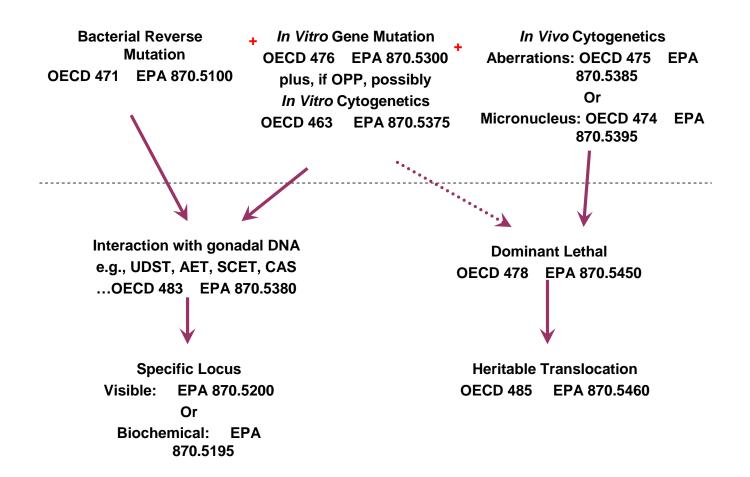


National Academies Current RA Vision

FIGURE 2-2 Biologic responses viewed as results of an intersection of exposure and biologic function. The intersection leads to perturbation of biologic pathways. When perturbations are sufficiently large or when the host is unable to adapt because of underlying nutritional, genetic, disease, or life-stage status, biologic function is compromised, and this leads to toxicity and disease. Source: Adapted from Andersen et al. 2005. Reprinted with permission; copyright 2005, *Trends in Biotechnology*.

Testing Batteries

- Currently no single test can detect the entire spectrum of induced mutations.
- Assays and test batteries have developed to assess effects on the three major endpoints of genetic damage associated with human disease:
 - mutations in single genes (point mutations) or in blocks of genes;
 - clastogenicity (structural chromosome aberrations);
 - aneuploidy (numerical chromosome aberrations).



EPA Testing Scheme

- Current EPA genotoxicity testing battery is required for pesticides and toxic substances that are regulated under:
 - Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)
 - Toxic Substances Control Act (TSCA)
- Three-tiered system of various genotoxicity tests
- Discussed in Dearfield *et al.* 1991. *Mutat. Res.* 258:259-283

OPPTS Mutagenicity Testing Scheme for Existing Chemicals and Pesticides

ICH Testing Scheme

- International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH Guidelines)
- The standard test battery:
 - A test for gene mutation in bacteria
 - An *in vitro* test with cytogenetic evaluation of chromosomal damage with mammalian cells <u>or</u> an *in vitro* mouse lymphoma tk assay
 - An *in vivo* test for chromosomal damage using rodent hematopoietic cells
- Discussed in Muller *et al.* 1999. *Mutat. Res.* 436(3):195-225

MOA Framework

- Hypothesized MOA: summary description and identification of key events
- Experimental support:
 - Strength, consistency, specificity of association
 - Dose-response concordance
 - Temporal relationship
 - Biological plausibility and coherence
- Consideration of the possibility of other MOAs
- Relevance to humans

MOA Simple Scheme (from Dearfield & Moore, EMM 46: 236-245, 2005)

Weight of evidence (WOE) analysis to determine if mutagenic or not

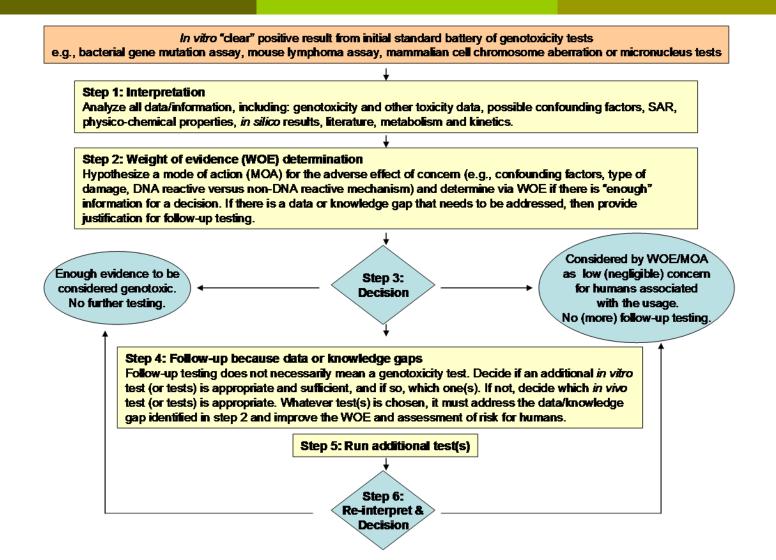
WOE analysis to determine if mutagenic activity is mode of action (MOA) for the adverse effect of concern

Inform low-dose extrapolation (i.e., is MOA likely to be linear, non-linear, or unknown at low exposure levels) ¹⁰

EPA's Mutagenic MOA Framework

Framework for Determining a Mutagenic Mode of Action for Carcinogenicity Using EPA's 2005 Cancer **Guidelines and Supplemental** Guidance for Assessing Susceptibility from Early-Life **Exposure to Carcinogens**

External peer review


completed 05/08

www.epa.gov/ osa/mmoaframework/

pdfs/MMOA-ERD-FINAL

-83007.pdf

Ranking of existing genotoxicity assays

Type of assay	Cate gory	OECD Guideline(s)	Endpoint(s)	Strengths	Limitations	Opportunities	References				
Gene mutations											
Gene mutation assays in transgenic models	ample	No guideline	Gene mutations (point mutations including base pair substitutions and frameshift mutations) in mammals <i>in</i> <i>vivo.</i> Reporter genes (e.g., <i>lacZ</i> , <i>lacl, gpt</i>) in shuttle vectors (e.g., lambda phage). Some models (e.g., <i>spi</i> , plasmid) also have the ability to detect deletions.	Can be applied to any tissue. Relevant end- point: gene specific. No selective pressure on mutations, therefore accumulation of damage over time. Uses a small number of animals.	Labor intensive and expensive. Requires multiple dosing. Requires transgenic animals. Need to optimize protocols for different tissues, or to apply the recommended design (28 treatment days, sampling after 3 and/or 28-day recovery period). Mutamouse, Big Blue and <i>gpt</i> delta models do not detect large deletions. Relatively high mutant frequency background shown to impact the sensitivity.	Mutant sequencing for mechanistic information (mutational spectrum) and confirmation of mutation (increase in mutant frequency versus clonal effect). Quantitation of dose response possible.	Heddle et al. (2000), Thybaud et al. (2003), Lambert et al. (2005), OECD (2009)				

Thank you very much Any questions?

Except where noted, the views presented in this presentation are solely those of the presenter.

Assays that can be chosen					Gene mutation assays		Micronucleus assay		Chromosome Aberration assay	Assays for non DNA reactive	
		DNA adduct UDS assay assay		Cornet assay	<i>In vitro</i> assays (e.g. hpit)	Transgenic models (a)		Micronuclei Micronuclei without with centromere centromere			
End-points detected by the above assays		DNA Primary damage		Point mutations	Point		Structural	Numerical	01		
		Adducts Breaks			Point Deletion mutations	Deletions	chromosome damage	chromosome damage	Structural chromosome damage	mechanisms	
Follow-up in case of positive findings in the <i>in</i> vitro gene mutation assays: for mechanistic purpose and/or confirmation of the <i>in vitro</i> findings	In vitro assays	To evaluate DNA reactivity			To confirm the gene mutation end-point <i>in vitro</i>						
	In vivo assays	To further evaluate DNA reactivity <i>in vivo</i>				To further evaluate the gene mutation end-point <i>in vivo</i>					To evaluate the evidence supporting non DNA
Follow-up in case of positive findings in the <i>in</i> <i>vitro</i> chromosome damage tests: for mechanistic purpose and/or confirmation of the <i>in vitro</i> findings	In vitro assays	To evaluate DNA reactivity			To confirm the induction the chromosom damage end-point <i>in vitro</i> and to differentiate clastogen from aneugen mechanism				<i>n vitr</i> o ogen from	mechanisms	
	In vivo assays	To further evaluate DNA reactivity <i>in vivo</i>			evaluate th chrom os on dam age		end-point in	To further evaluate chromosome damage end-point <i>in vivo</i> , and in case of <i>in vivo</i> findings to differentiate clastogen from aneugen mechanism			

(a): for more details on transgenic mutation assays and their ability to detect point mutations and deletions see Heddle et al. (2000) and Thyband et al. (2003)