Food and Respiratory Allergy in Ghana
Insights from population studies among children

Abena S. Amoah
Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
Parasitology Department, Leiden University Medical Center, Leiden, The Netherlands
Background: Allergies in Ghana

- Studies indicate that allergies are on the rise in Ghana
- Two surveys conducted 10 years apart in children (aged 9-16 years) in one area showed an increase in markers of allergy

Exercise-Induced Bronchospasm

Skin Prick Test Reactivity

Addo-Yobo et al, Plos Med 2007
Distinct urban-rural differences in allergy outcomes

Within urban area differences in allergy outcomes based on socioeconomic status

Addo-Yobo et al., Plos Med 2007
Factors associated with the rural to urban gradient in allergy

- Decrease in infection
- Increase in pollution
- Increase in allergy
- Dietary changes (rural diet to fast-food)

Adapted from van Ree and Yazdanbakhsh, 2007
Objectives

i. To determine urban-rural differences in the prevalence of aero-allergy in Southern Ghana

ii. To determine urban-rural differences in the prevalence of food allergy in Southern Ghana

iii. To examine associations between parasitic worm infections and allergy outcomes
Study area and population

Greater Accra Region

School-based cross-sectional study
- 13 Schools
 - 8 Rural
 - 5 Urban
- Target age-range: 5-16 years
- N=2,331 recruited
Study Methodology: Allergic sensitization based on serum-specific IgE levels

ImmunoCap® /RAST

Allergen-specific IgE
- Mite (Der p)
- Cockroach (Bla g)
- Peanut (Ara h)

Sensitization cut-off: \(\geq 0.35 \text{ kU/L} \)
Study Methodology: Allergic sensitization by skin prick testing

Skin prick test positivity cut-off
Average wheal size ≥ 3mm

Allergen panel

- Negative control
- Mite extract
- Cockroach extract
- Peanut extract
- 6 fresh fruits
- Positive control

Aero-allergens
Food Allergens
Study Methodology: Reported Symptoms

• Standardized questionnaire administered to parents or guardians of study subjects

• Symptoms of asthma & other allergic disorders:
 • Adapted from the International Study of Asthma and Allergies in Childhood
 • Weinmayr et al, Allergy 2010
 • Weinmayr et al, Eur Respir J 2008

• Symptoms of adverse reactions to food:
 • Adapted from EuroPrevall study
 • Kummeling et al, Allergy 2009
 • Wong et al, Allergy 2009
 • Mills et al, Allergy 2007

• Demographic and socioeconomic parameters
Study Methodology: Parasitological assessment

Urine
- Urine filtration
- *S. haematobium*

Stool
- Kato-Katz
- Intestinal helminths
Results: Aero-allergy outcomes stratified by area (N=1385)

- **Specific IgE > 0.35 kU/L**
 - **Mite**
 - **Cockroach**

- **Skin Prick Test (Wheal Size > 3mm)**
 - **Mite**
 - **Cockroach**

- **Respiratory Symptoms (Yes)**
 - **Wheeze (12 months)**
 - **Asthma**

* * p < 0.05
** p < 0.01
*** p < 0.001
Worm infection and Skin Prick Test reactivity

Logistic regression models adjusted for age, gender and area

Wald’s Test: * P<0.05
Worm infection and respiratory allergy symptoms

Logistic regression models adjusted for age, gender and area
Wald's Test : * P<0.05
Reported adverse reactions to food (N=1407)

Food Items

- Beans
- Pineapple
- Peanuts
- Okro
- Cassava
- Mango
- Kontomire
- Sorghum
- Nutmeg
- Melon
- Pawpaw
- Avocado
- Wheat
- Sweet Potato
- Fish
- Cow Milk
- Soybean
- Palm Nut
- Corn
- Hen’s egg
- Coconut
- Apple
- Banana
- Carrot
- Millet
- Rice
- Cocoyam
- Water yam
- Potato
- Shrimp
- Orange
- Tomato
- Wheat Flour
- Plantain

% Reported Reactions

- All children
- Rural children
- Urban children
Reported symptoms of adverse reactions to food (N=1407)

1 ‘Tingling/swelling = swelling of the mouth, lips or throat’
2 ‘Rash/itch = itching of the skin including nettle sting-like rash’
Ghana and peanuts (groundnuts)

- High peanut consumption
- Relatively few reports of adverse reactions to peanut
- Lack of avoidance of peanuts during pregnancy
- Early introduction of peanut as part of weaning foods
Peanut allergy outcomes among urban and rural children in Ghana

Specific IgE > 0.35 kU/L
N = 1328

Skin Prick Test > 3mm
N = 1396

Reported Symptoms (Yes)
N = 1372

Peanut Allergy Outcomes

Prevalence (%)

Rural Urban Rural Urban Rural Urban

23.6 9.7 1.8 2.1 2.1 0.6

* p < 0.05
** p < 0.01
*** p < 0.001
Subjects reporting adverse reactions to peanut (N=21)

Reported Peanut Symptoms (N=21)

- Diarrhoea/Vomiting
- Itching/Tingling Mouth
- Headaches
- Stiffness in joints
- Runny/stuffy nose
- Red/sore/runny eyes
- Difficulty swallowing
- Breathlessness
- Fainting/Dizziness
- Rash/Itch

Reaction time following ingestion (N=21)

Reaction Time

- Minutes
- Hours
- Days

Percentage (%)
Peanut allergy outcomes (complete data, N=1004)

- Peanut Specific IgE
 - IgE ImmunoCap®
 - Cut-off: >0.35 Ku/L

- Peanut SPT Reactivity
 - Cut-off: ≥ 3mm

Reported Symptoms to Peanut Questionnaire

- 170
- 13
- 5
- 4
- 0
- 0
- 8
Worm infection and peanut-specific IgE sensitization

Logistic regression model adjusted for age, gender and area
Wald’s Test : *** P<0.001
Additional sera measurements in a subset (N=43):

- Specific IgE responses to purified peanut allergens Ara h 1, 2, 3 (seed storage proteins)
- Recombinant non-glycosylated allergen produced in an *E. coli* strain

![Graph showing specific IgE responses to peanut allergens](image)
Peanut-specific IgE: Cross-reactive carbohydrate determinants

Additional sera measurements in a subset (N=43)

- Specific IgE responses to bromelain as a marker of cross-reactive carbohydrate determinants (CCDs) which are carbohydrate epitopes on glycoproteins
N-glycan induced IgE cross-reactivity

- Indications of the presence of IgE recognizing epitopes common to both peanut and bromelain.

- Possible cross-reactivity due to N-glycan epitopes commonly found in plants and helminths.

![Graph showing correlation between CCD-specific IgE and Peanut-specific IgE](image)

- Core $\beta(1,2)$-xylose
- Core $\alpha(1,3)$-fucose
Inhibition of IgE binding to peanut by bromelain & Schistosoma SEA

- More than 80% inhibition with both bromelain and Schistosoma soluble egg antigen
- High levels of peanut-specific IgE as a result of carbohydrate cross-reactivity
Peanut-specific IgE: responses to recombinant Ara h 9

Additional sera measurements in a subset (N=43)

• Specific IgE responses to purified peanut allergen Ara h 9 (lipid transfer protein)

• Recombinant non-glycosylated allergen produced in an *E. coli* strain
Stripped basophil histamine release assay

- Basophils from Dutch non-atopic donor
- Stripped basophils from Dutch non-atopic donor
- Basophils re-sensitized with IgE from Ghanaian donor and then stimulated with an allergen

lactic acid treatment: removal of IgE
incubation with serum: sensitization with IgE

Source: Ronald van Ree
Basophil histamine release - Ara h 9 & whole peanut

Donor #1
- **ID**: AB051
- **Area**: RURAL
 - IgE to whole peanut: 40.2 kU/L
 - IgE to CCD: 1.8 kU/L
 - IgE to rAra h 9: 72.8 kU/L

Donor #2
- **ID**: GR211
- **Area**: URBAN
 - IgE to whole peanut: 21.0 kU/L
 - IgE to CCD: 4.9 kU/L
 - IgE to rAra h 9: 77.4 kU/L
Basophil histamine release - Ara h 9 & whole peanut

<table>
<thead>
<tr>
<th>Allergen (μg/ml)</th>
<th>Histamine release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>0.1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allergen (μg/ml)</th>
<th>Histamine release (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>0.1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

IgE to whole peanut: 40.2 kU/L
IgE to CCD: 1.8 kU/L
IgE to rAra h 9: 72.8 kU/L
SPT to peanut: -
Reported Symptoms: Yes

IgE to whole peanut: 21.0 kU/L
IgE to CCD: 4.9 kU/L
IgE to rAra h 9: 77.4 kU/L
SPT to peanut: +
Reported Symptoms: No
Conclusions

• Significant urban-rural differences in allergy outcomes

• Schistosoma infection negatively associated with mite SPT reactivity
 • Indications of a protective effect

• High levels of allergen-specific IgE as a result of carbohydrate cross-reactivity
 • Possible helminth involvement in inducing cross-reactivity

• Little evidence of IgE-mediated peanut allergy

• Biologically active IgE to Ara h 9 observed
 • Factors associated with Ara h 9 sensitization in Ghana are currently unknown
Schistosome infection is negatively associated with mite atopy, but not wheeze and asthma in Ghanaian Schoolchildren
B. B. Obeng1,2,*, A. S. Amoah1,2,*, I. A. Larbi2, D. K. de Souza2, H.-W. Uh3, M. Fernández-Rivas4, R. van Ree5, L. C. Rodrigues6, D. A. Boakye2, M. Yazdanbakhsh1 and F. C. Hartgers1
1Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands, 2Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana, 3Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands, 4Department of Allergy, Hospital Clínic de Sant Carles, Madrid, Spain, 5Department of Experimental Immunology and Department of Otorhinolaryngology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands and 6Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK

Food Allergy in Ghanaian Schoolchildren: Data on Sensitization and Reported Food Allergy
Benedicta B. Obeng a,c Abena S. Amoah c Irene A. Larbi c Maria Yazdanbakhsh a Ronald van Ree b Daniel A. Boakye c Franca C. Hartgers a
aDepartment of Parasitology, Leiden University Medical Centre, Leiden, and bExperimental Immunology and Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands; cDepartment of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana

Peanut-specific IgE antibodies in asymptomatic Ghanaian children possibly caused by carbohydrate determinant cross-reactivity
Abena S. Amoah, MSc a,b Benedicta B. Obeng, BSc a,b Irene A. Larbi, MSc a Serge A. Versteeg, BSc c Yvonne Aveyetey, BSc a Jaap H. Akkerdaas, PhD c Laurian Zuidmeer, PhD c Jonas Lidholm, PhD d Montserrat Fernández-Rivas, MD, PhD e Franca C. Hartgers, PhD d Daniel A. Boakye, PhD a Ronald van Ree, PhD c and Maria Yazdanbakhsh, PhD b Accra, Ghana, Leiden and Amsterdam, The Netherlands, Uppsala, Sweden, and Madrid, Spain
Acknowledgements

Leiden University Medical Center
Maria Yazdanbakhsh
Yvonne Kruize
Benedicta Obeng
Franca Hartgers
Firdaus Hamid
Hae-Won Uh (MSTAT)

Academic Medical Center
Ronald van Ree
Serge Versteeg
Jaap Akkerdaas
Laurian Zuidmeer-Jongejan

Noguchi Memorial Institute for Medical Research
Daniel Boakye
Irene Larbi
Yvonne Aryeetey
Elias Asuming-Brempong
William van der Puije
Dziedzom de Souza
Richard Akuffo
National Service Personnel

London School of Hygiene & Tropical Medicine
Laura Rodrigues

Hospital Clinico San Carlos
Montserrat Fernández-Rivas

Thermo Fisher Scientific
Jonas Lidholm

FUNDING:
Thank You