HESI DART – ETS Thyroid Working Group Survey Data

Results & Path Forward

Pragati S. Coder, PhD, DABT

Background

- April 2017 The HESI DART Committee approved a new project to evaluate thyroid hormone assessments in laboratory animal species.
- October 2017 The HESI DART Committee approved combining project efforts with the existing ETS Thyroid Taskforce.
- June 2018 Targeted Thyroid Hormone Assessments Survey released (to members of HESI DART Committee, SOT/RDTSS, TS & ETS) with the goal of collecting data from laboratories that conducted regulated safety assessment studies.*
- Responses received from 12 laboratories from across US & EU.

Contributing Laboratories

- BASF
- Bayer AG Pharma
- Bayer SAS Crop Sciences
- Charles River Ashland
- Charles River Den Bosch
- Charles River Horsham

- Charles River Lyon
- Covance Laboratories
- Dow Agro Sciences
- DuPont Haskell
- Sequani Ltd.
- US EPA

Survey Organization

- Part 1: General Survey 25 Questions with sub-parts, for details.
- Inspired by the BfR Survey (2016)¹ and SOT Thyroid Round Table session (2017)²
- General Questions pertained to:
 - Frequency of Assessments
 - Assessment Types (Total & Free T3 & T4, & TSH)
 - Analytical Methods & Validation (Sample & Method type, LoD, LLoQ etc.)
 - Animal Species, Strain, Age/Life stage, Physiological Status, Sex etc.
 - Laboratory SOPs & Precautions (Time and route of blood collection, anesthesia, stress reduction?)
 - Information Sharing (i.e. willingness to share SOPs/Protocols, HC Data)

Survey Organization

- Part 2: Data Submission Spreadsheets (Total & Free T3 & T4, & TSH).
- Serve as the start of a Global HCD Repository.
 - Reg. Auth. have different requirements on TH assessments but, analytical methodologies and quality criteria are not defined or recommended.
 - Samples are collected across at multiple life stages in a variety of studies.
 - Unlike humans, reference concentration ranges do not exist for lab animals.
 - Each lab has its own methods/HCD making comparisons across the industry difficult
 especially for regulators who have to make decisions regarding these compounds.
 - Availability of a global HCD repository could aid in...
 - Interpretation of equivocal datasets and allowing inter-laboratory comparisons*
 - Understanding population ranges and variability (by assay and strain)
 - Inform decisions regarding methodologies appropriate for various life stages

General Questions (9 of 12 labs responded)

- Species 100% Rat; 10% mouse; 45% Dog; 22% NHP
- Circadian rhythm 100% with AM sampling. Occasional datasets w PM.
- Blood Sampling 66% single bleeds; 88% terminal bleeds
- Blood Sampling 55% <30 animals at each interval, 45% <50/interval.
- Blood Sampling 66% 30-60 sec/animal, 34% <30 sec/animal.

Assay Validation – Quality Criteria/Parameters

Generally accepted, and published,^{1,2} criteria are considered independent of the assay methodology. Assays should be expected to meet pre-defined performance criteria (<u>CV OECD 407/408- T3/T4 <25% and TSH <35%</u>; EPA OPPTS Male Pubertal - T4 <27.5% and TSH <58%, Female pubertal – T4 <29%)

- Reproducibility and Sensitivity (LLoQ)
- Precision (%CV) & Accuracy (%RE) (inter- and intra-run)
- Selectivity and Cross-reactivity (for immunoassays)
- Measurement Range and Linearity.
- Matrix Effects, or lack thereof.
- ☐ Stability, including Freeze-Thaw Stability
- Quality Controls & Calibration Standards

Assay Validation Responses (100% Serum)

Stress & Thyroid Hormone Assessments

- Increases in TH in response to stress have been previously discussed and documented. Laboratories were asked to provide their stress reduction criteria and responses included ..
- Animal handling/acclimation
- Single housing of Gestating/Lactating animals
- Group housing 5/grp vs 2-3/grp
- Separation of aggressive animals
- Environmental Conditions (temp, humidity, music?)

- Minimal restraint for in-life sampling
- Anesthesia quick onset, if used
- Use of holding room, or ante-room (55%)
- Movement of animals pre-room to necr.
- Timing of removal, restraint, sampling
- Dam and pup maintained together for as long as feasible

Data Submission Section - Summary Statistics

- 12 of 12 Labs submitted data.
- ~1750 datasets received.
- Total T4 most robust
- TSH and T3 less robust
- Free T3 & T4 (insufficient)
- Required unit standardization
 - T3 & T4 (nmol/L)
 - TSH (μg/L)

* Included data from General Toxicity Studies

Data Submission Section - Summary Statistics

Key Parameters Available:

- Species & Sex
- Age of Collection
- Method & Route of collection
- Analytical method
- Time of collection
- Anesthesia Status
- Fasting Status

* Included data from General Toxicity Studies

Selected Parameters - Analysis Constraints

- Species—Rat, Dog (Beagle) and NHP (Cyno).
- Rat Strains— Sprague Dawley, Han Wistar and Long Evans
- Study Types— OECD 407, 408, **421/422, 443, EPA CTA, Pubertal Assays**, Mechanistic/Investigative Studies etc.
- Age Categories— GD 20 Fetuses, PND 4, PND 13, PND 21-28 (weanlings), PND 41-42 (pubertal), PND 50-53 (pubertal), Adults (10-16w and >18w), and Maternal females at GD 20, LD 1-6, LD -14 and LD 21-22.
- Data Categories- Sex, Analytical Method, Route of Collection, Fasting and Anesthesia status.

Heat Map of Submitted Data

>10 sets												>	>
5-10 sets	sn:			∞		42	m	Dams	Dams	Dams	Dams	10-16	Adult >18
<5 sets	20 Fetus	4 0	13) 21-28	35	41-	50-53	20 Da	1-6 Da	13-14	21-22	Adult 1	t Adul
No data	GD	PND	PND	PND	PND	PND	PND	В	LD 1	LD 1	LD 2	Yg A	Mat
Total T4													
Total T3													
TSH													
Free T3													
Free T4													

Total T4 – Neonate (PND 4) Pups

➤ 20 studies. 4 Labs. 4 Methods. 2 Rat strains. Samples pooled, regardless of sex.

Method	LoD	LLOQ	Mean
Method	(nm	ol/L)	%CV
RIA (Lab 1, n=1) 2008	-	10.6	31.4
ELISA (Lab 1, n=3)	5.4	6.8	13.53
ECLIA (Lab 2, n=6)	NL	26.0	NL
ECLIA (Lab 7, n=2)	3.7	12.9	NL
ECLIA (Lab 10, n=5)	5.4	7.0	14.4
HPLC/MS (Lab 10, n=3)	0.01	0.16	14.4

Total T4 – Pre-weanlings (PND 13) Pups

> 152 studies, 5 Labs. 3 Methods; 2 Rat strains; Samples separated by sex.

Method	LoD	LLOQ	Mean	
Method	(nm	ol/L)	%CV	
ELISA (Lab 1, n=3)	5.4	6.8	12.5-13.7	
ECLIA (Lab 2, n=7)	NL	26.0	NL	
ECLIA (Lab 7, n=100)	3.7	12.9	NL	
ECLIA (Lab 8, n=11)	3.7	12.9	17.6-18.0	
ECLIA (Lab 10, n=25)	5.4	7.0	11.9-12.6	
HPLC/MS (Lab 10, n=5)	0.01	0.16	15.9-22.1	

Total T4 – Weaning (PND 21-28) Pups

➤ 14 studies. 3 Labs. 4 Methods. 1 Rat strain. Samples separated by sex.

Method	LoD	LLOQ	Mean	
Method	(nm	ol/L)	%CV	
RIA (Lab 1, n=2)	NL	10.6	19.3-21.4	
ELISA (Lab 1, n=3)	5.4	6.8	15-16.5	
ELISA (Lab 9, n=3)	12.9	12.9	10.6-34.6	
ECLIA (Lab 10, n=3)	5.4	7.0	16-16.6	
HPLC/MS (Lab 10, n=3)	0.01	0.16	19.9-20.4	

NL = Not Listed

Total T4 – Adult Animals (Males & Females)

> 167 studies, 7 Labs. 4 Methods. 2 Rat strains. Samples separated by sex.

Method	LoD	LLOQ	Mean	
Wethou	(nmol/L)		%CV	
ECLIA (Lab 1, n=3)	5.4	6.8	11.1-18.2	
ECLIA (Lab 2, n=7)	NL	26	NL	
ECLIA (Lab 7, n=101)	3.7	12.9	NL	
ECLIA (Lab 8, n=11)	3.7	12.9	16.0	
ELISA (Lab 9, n=3)	12.9	12.9	14.3-16.2	
ECLIA (Lab 10, n=35)	5.4	7.0	11.4-23.6	
UHPLC/MS (Lab 10, n=6)	0.01	0.16	20.2-21.9	
RIA (Lab 12, n=1)	NL	12.9	10.4-12.3	

Total T4 – Gestating/Lactating Dams

➤ 15 studies. 3 Labs; 2 AC methods; 1 rat strain

Method	LoD	LLOQ	%CV	
Wethou	(nmol/L)		/6CV	
ELISA (Lab 1, n=6)	5.4	6.8	20.8	
ELISA (Lab 9, n=5)	12.9	12.9	31.1	
UHPLC/MS (Lab 10, n=4)	0.01	0.16	24.8	

Total T4 – Preliminary Reference Ranges

Strain	Age	#Datasets	Mean Value (nmol/L)	Min Value (nmol/L)	Max Value (nmol/L)
Han Wistar	PND 4	8	24.14	18.02	32.20
	PND 13 Males	118	81.82	53.54	102.19
	PND 13 Females	119	80.75	50.19	107.34
	Adult Males	119	64.72	44.14	82.63
	Adult Females	17	44.53	31.66	56.60
Sprague Dawley	PND 4	12	21.75	10.52	31.40
	PND 13 Males	33	79.27	47.62	154.88
	PND 13 Females	33	76.91	46.20	144.66
	PND 21-28 Males	12	52.32	38.34	66.54
	PND 21-28 Females	14	53.79	40.04	66.80
	Adult Males	48	56.98	37.34	125.23
	Adult Females	15	50.80	34.63	66.00

Total T4 – Preliminary Reference Ranges

Strain	Age	#Datasets	Mean Value (nmol/L)	Min Value (nmol/L)	Max Value (nmol/L)
Han Wistar	GD 20 Fetuses	1	4.29	4.29	4.29
Sprague Dawley	GD 20 Fetuses	2	9.22	6.82	11.97
	Gest/Lact Dams	15	37.30	11.97	66.96
	GD 20 Dams	4	28.28	22.14	34.41
	LD 21-22 Dams	5	48.87	31.27	66.96

TSH – Neonate (PND 4) Pups

16 studies; 3 labs; 1 method; 2 rat strains

Method	LoD	LLOQ	9/61/
Method	(µg	%CV	
RIA (Lab 1, n=4)	1	2	23.82
RIA (Lab 3, n=5, Fem)	0.5	1	12.45
RIA Lab 3, n=7, Mal)	0.5	1	12.14
RIA Lab 10, n=5	1.4	2	38.64

Serum TSH – Preliminary Reference Ranges

Strain	Age	#Datasets	Mean Value (μg/L)	Min Value (μg/L)	Max Value (μg/L)
Sprague Dawley	PND 4	9	3.63	0.89	8.50
	PND 13 Males	4	4.65	3.85	5.46
	PND 13 Females	4	5.20	4.41	5.77
	PND 21-28 Males	10	3.60	0.95	8.6
	PND 21-28 Females	10	3.37	0.87	7.4
	Adult Males	14	7.3	4.00	15.60
	Adult Females	13	4.4	3.00	8.70
	GD 20 Fetuses	3	5.18	3.82	6.53
	Gest/Lact Dams	10	9.59	4.66	13.10
	GD 20 Dams	3	9.08	7.28	10.36
	LD 21-22 Dams	3	7.79	4.66	9.50

Serum TSH – Preliminary Reference Ranges

Strain	Age	#Datasets	Mean Value (μg/L)	Min Value (μg/L)	Max Value (μg/L)
Han Wistar	PND 4 Males	5	5.67	4.34	7.25
	PND 4 Females	7	6.24	5.18	7.58
	PND 13 Males	2	4.55	4.49	4.6
	PND 13 Females	2	5.02	4.99	5.04
	PND 21-28 Males	5	4.67	3.9	5.23
	PND 21-28 Females	5	4.39	4.26	4.54

T3 – Gestating/Lactating Dams

12 studies; 3 labs; 3 methods; 1 rat strain

Method	LoD	LLOQ	%CV	
ivietnoa	(nm	ol/L)	%CV	
ECLIA (Lab 1, n=6)	0.30	0.40	14.34	
ELISA (Lab 9, n=3)	0.54	0.54	11.20	
MS/MS (Lab 10, n=3)	0.0031	0.0077	20.71	

Total T3 – Preliminary Reference Ranges

Strain	Age	#Datasets	Mean Value (nmol/L)	Min Value (nmol/L)	Max Value (nmol/L)
Sprague Dawley	PND 4	6	5.74	0.32	30.62
	PND 13 Males	5	1.30	0.88	1.70
	PND 13 Females	5	1.26	0.83	1.72
	PND 21-28 Males	7	2.47	1.29	3.67
	PND 21-28 Females	7	2.47	1.22	3.36
	Adult Males	8	9.1	0.65	68.67
	Adult Females	6	9.7	0.77	53.64
	GD 20 Fetuses	3	1.00	0.02	2.02
	Gest/Lact Dams	12	1.52	0.54	2.34
	GD 20 Dams	4	1.38	0.77	2.34
	LD 21-22 Dams	4	1.71	0.73	2.26

What can we conclude from these data?

- The database is still weak, except for T4 and only at specific life stages.
 - Regular data submission is necessary to strengthen database.
- Every laboratory currently uses different units for presenting data. Reporting unit harmonization across the industry is important.
 - Ease of incorporation of data into global repository
 - To allow use of reference ranges
 - To allow for inter-laboratory comparisons.
- 4 methodologies are being used predominantly (RIA, ECLIA, ELISA and HPLC/MS)
 - Establishment of universal quality criteria is necessary to support data irrespective of methodology used.

What can we learn from these data?

• Which assay methodology is the best? What method should we validate in the lab? Which assay works best for X, Y or Z?

All or None! The answers depend on the question being asked..

- (a) Age of assessment (e.g. onset of TH production)
- (b) Sample Volume (and limitations thereof)
- (c) Sensitivity of the Assay (LLOQ)
- (d) Precision (%CV closeness of repeated individual measures)
- (e) Accuracy (closeness of determined values to nominal (QC))
- (f) Reproducibility & Reliability (ability of the assay to repeatedly give the same result)

The Path Forward ...

Teratology Symposium

Teratology Society Annual Meeting (San Diego, CA, June 2019)

Working Group Update

European Teratology Society Meeting (Helsinki, Finland, Sep 2019)

Workshop Report

 A summary of the presentations and discussions held at this meeting, including conclusions and recommendations from the breakout groups to be published (2019-2020)

Global HCD Repository

 To be maintained as a living database (public location yet to be determined), preferably with annual updates; available for public use.

