

Quantitative Dose-Response Analyses for Risk Assessment and Regulatory Decision-Making: Issues, Applications, and Challenges

Dr George Johnson Swansea University Medical School Chair, HESI-GTTC Quantitative Group

MAIN BENEFITS OF ENDPOINT SPECIFIC CRITICAL EFFECT SIZES (CES) TO THE USERS AND ASSESSORS

- 1. In line with expert guidance.
- 2. A default of 10% leads to BMD CI and points of departure (reference doses), that are too low and often lack precision.
- Moving to a higher position on the graph (10% to 50% above background), takes the BMD estimate to a more precise area of the model, with generally tighter and higher dose BMD CI.
 - As a result, the BMDL is often higher and the BMDL:BMDU ratio is lower.

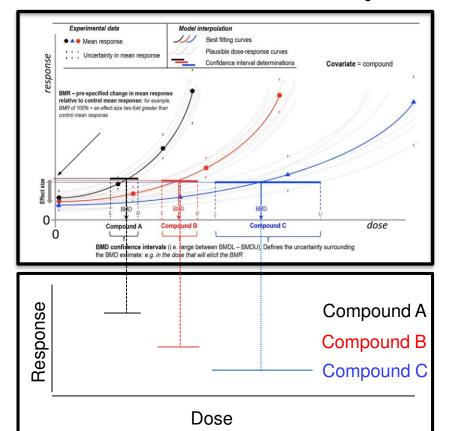
HOW TO CARRY OUT THE BMD APPROACH?

How to do it? https://proastweb.rivm.nl

		National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport	
PROASTweb			
	New		
	Decimal separator	Comma O Point Choose File no file selected	
	Data set nie	Choose File no file selected Upload	
	Analysis name		
	Data set	Select a dataset or upload a new one.	
	Back to overview Restore	Next: Specify	
RIVM PROAST Web, PROAST version 65.2, released on 23-01-2018			

Research Article

Quantitative Dose–Response Analysis of Ethyl Methanesulfonate Genotoxicity in Adult *gpt*-delta Transgenic Mice


Xuefei Cao, ¹ Roberta A. Mittelstaedt, ¹ Mason G. Pearce, ¹ Bruce C. Allen, ² Lya G. Soeteman–Hernández, ³ George E. Johnson, ⁴ C. Anita H. Bigger, ⁵ and Robert H. Heflich ¹*

 ¹U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
 ²Bruce Allen Consulting, Chapel Hill, North Carolina
 ³Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
 ⁴Institute of Life Science, College of Medicine, Swansea University, Wales, United Kingdom
 ⁵Bigger Consulting, St. Augustine, Florida

In vivo – covariate analysis to improve BMD analysis

BMD potency ranking

It was assumed that the maximum response and log-steepness were equal for all response curves, while parameters for background response, potency and within group variation were examined for being covariate dependent (Slob and Setzer 2014).

TDI/AI: Tolerable/Acceptable Daily Intake

- 1. In Vivo BMD Confidence interval (CI)
- **2.** Allometric Scaling Factor (FDA, 2005) = **0.16** for rat **0.081** mouse
- 3. Human-equivalent dose, assuming e.g. 60kg
- 4. Overall Assessment **Factor**10 inter-individual x 10 effect severity x others? = **100** or other?

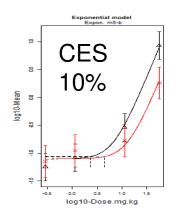
Tolerable/Acceptable Daily Intake (TDI/ADI) Estimate

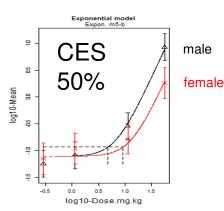
TDI/ADI = (BMD CI) * (Allometric SF) * (Human equiv. dose)
Assessment factors

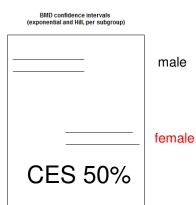
ETOPOSIDE

Mutation Research 342 (1995) 71-76

The in vivo rat micronucleus test: integration with a 14-day study


Michael L. Garriott *, Jamie D. Brunny, Delinda E.F. Kindig, Joseph W. Parton, Linda S. Schwier


Lilly Research Laboratories, A Division of Eli Lilly and Company, Greenfield, IN 46140 USA


Received 13 June 1994; revised 2 November 1994; accepted 28 November 1994

ETOPOSIDE

1.0

1.2

0.6

0.8

log10- CED-0.5

Covariate.	MN PCE%
	male
BMDL ₁₀ (mg/kg) (CES 10%)	1.16
BMDU ₁₀ (mg/kg) (CES 10%)	3.97
BMDL ₅₀ (mg/kg) (CES 50%)	2.89
BMDU ₅₀ (mg/kg) (CES 50%)	7.42
Adjustment Factors	100
Allometric Scaling	0.16
Person.kg	60
Al.L (mg/kg/person) (CES 10%)	0.11
Al.U (mg/kg/person) (CES10%)	0.38
Al.L (mg/kg/person) (CES 50%)	0.28
Al.U (mg/kg/person) (CES 50%)	0.71

FINAL POINTS

- 1.CES 10% vs 50%
- 2. Assessment factors bigger influence than CES %
- 3. Covariate BMD can be used to improve the analysis
- 4. Adjusting study design to capture parameter/variable e.g. genetic diversity (DO), can provide more precise BMD CI as well as potentially influence the assessment factors used thereafter.
- 5. Once BMD CI have been defined for each chemical, mode of action information can be used to help select adjustment factors.

END

ILSI Health and Environmental Sciences Institute