Evaluating the Conceptual Framework for Genomic Damage: Benzene Case Study

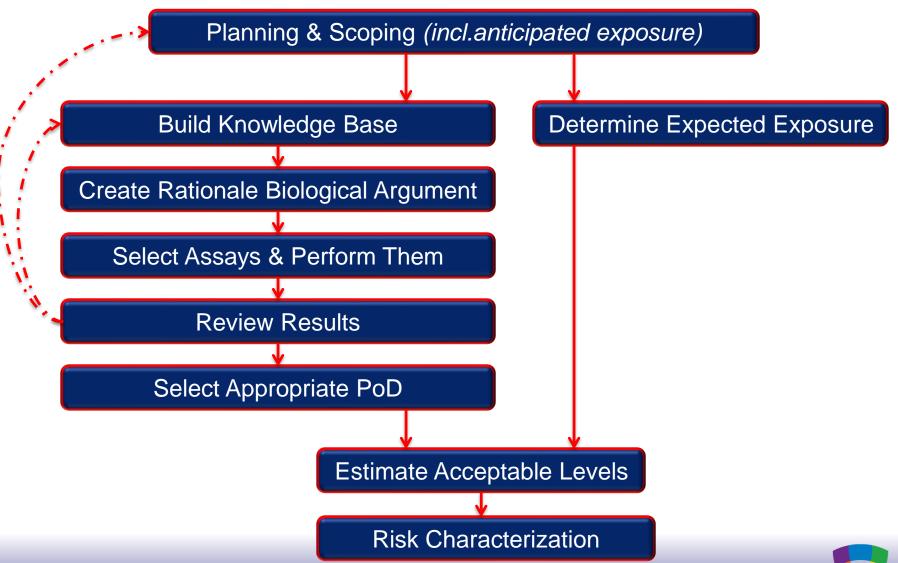
Nicholas Ball, on behalf of the GTTC Industrial Chemical Sub-group

DISCLAIMER

This presentation is the work of the HESI GTTC Group. It does not represent any work product or opinions by the individuals involved or the employers of any individuals involved.

CURRENT US / EU APPROACH - RISK ASSESSMENT OF MUTAGENS

- EU and US = no existing Regulatory framework
- Focus is on Hazard identification
 - Cancer Risk assessment where data exist
 - EU Classification and Labelling drives Risk Management
- There is a GAP!



A NEW APPROACH?

- Developed without taking into account current legislation
- Genetic toxicity assessed as an endpoint itself, BUT not evaluated in isolation
- Approach is ahead of existing regulatory frameworks
 - Transition needs to consider combining the current situation with the future

FRAMEWORK: TESTING STRATEGY FOR ASSESSMENT OF GENOMIC DAMAGE

Dearfield K.L., et al. (2016). Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. *Environ Mol Mutagen.*

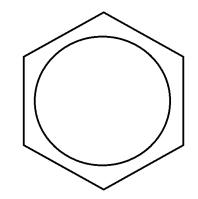
FROM CONCEPT TO CASES

<u>Goal:</u>

To evaluate usefulness/feasibility conceptual framework for various regulatory jurisdictions, incl. **industrial chemicals** and **pharmaceuticals**

Retrospective approach:

- Collect & review available data
- Review framework: would application of the framework and associated questions have led to data essential for risk assessment?



CASE STUDY: BENZENE

- Well known and studied industrial chemical
- Data rich (including toxicity, mechanisms, exposure potential)

Toxicity Profile:

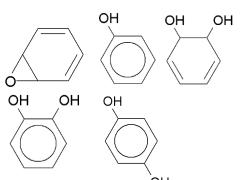
- Human carcinogen (associated with acute myelogenous leukemia)
- Hematotoxic
- Genotoxic
- Toxicokinetics well characterized
- Data on human variability / susceptibility

EXPOSURE

Volatile substance: <u>inhalation</u> most important route of exposure Different sources of exposure:

Occupational

- Petrochemical industry (benzene in crude oil, byproduct refining operations)
- Potential for exposure in low ppm range*
 - Carrieri et al, 2010: mean **0.014 ppm** (petrochemical plant, Italy)
 - Gaffney et al, 2010 (ExxonMobil refinery, Beaumont, USA):
 - Mean 'non-task' exposure levels, <1ppm,
 - Mean Task exposure levels **1.4 ppm** (air concentration, overall tasks,)**


General population

- Cigarette smoke, petrol filling station
- Exposure in ppb range EU Air quality limit for benzene 5µg/m³ (approx. 1.3ppb)
- * EU and USA
- ** task based exposure levels **not** = to Exceeding OEL

IN SILICO

	Benzene		
SMILES		c1ccccc1	
Structure		$\langle \bigcirc \rangle$	
Endpoints	DEREK	OA	SIS
Software Version	Derek Nexus v.5.0.2	TIMES V.2.27.20	Relevance
Ames Mutagenicity			
Chromosome Damage (in vitro)			
Non-specific genotoxicity (in vitro)			

Benzene metabolites profiled in OECD Toolbox Several alerts for DNA and protein binding, clastogenicity and carcinogenicity

< 70% similarity with successful AND <5% similarity with unsuccessful predictions;

Based on this What studies would we do?

- Ames?
- Consider Clastogenicity + importance of metabolism

IN VITRO GENOTOXICITY

Overview available data from commonly used in vitro tests

- Ames –ve as predicted
- MNvit +ve

Key Point: Try to get the most out of the testing as possible

- CAvit +ve
- MLA +/- consistent with 'mutagenicity prediction?'

Are there opportunities to 'update' this assay set?

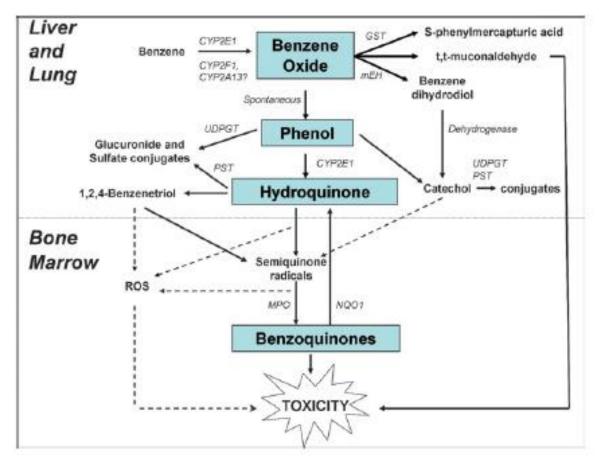
- potentially giving insight into MoA or dose response at this early stage

BENZENE TOXICITY

Before *in vivo* genotoxicity data are considered, what other information or data are available?

- AOPs
- In vitro data, e.g.
 - receptor activation (AhR; -ve in ToxCast)
 - oxidative stress
- In vivo data do we have or need?
 - 28-day repeated dose toxicity
 - 90-day repeated dose toxicity
 - developmental toxicity (screening)
 - toxicokinetics

These may inform how you plan in vivo follow up studies for genotoxicity



OTHER IMPORTANT TOXICITY FINDINGS

- Target organ toxicity (animals and humans):
 - Hematological system
 - o Anemia, Leukopenia, thrombocytopenia, Pancytopenia
 - >10ppm, chronic inhalation, rat
 - Immune system humoral and cellular immunological suppression

TOXICOKINETICS

From McHale, 2012

TOXICOKINETICS

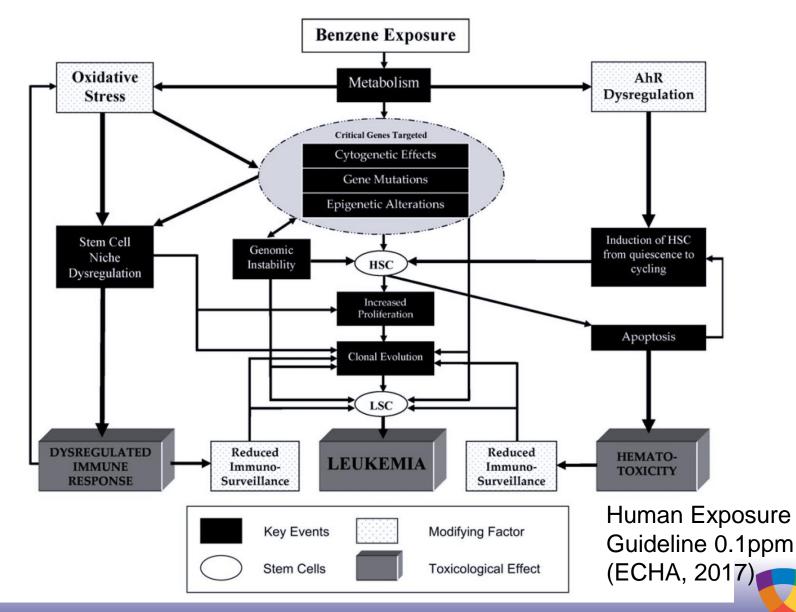
- Rapidly absorbed through the lungs; approximately 50% of the benzene in air is absorbed
- Rapidly distributed throughout the body and tends to accumulate in fatty tissues
- Metabolism in the liver and lungs
 - production of several reactive metabolites
 - At low exposure levels, benzene is rapidly metabolized and excreted predominantly as conjugated urinary metabolites
 - At higher exposure levels, saturation of metabolic pathways → large portion of absorbed dose excreted as parent compound.
- PBPK model available (Watanabe 1994)

SUSCEPTIBLE GROUPS

Genetic variation

- Polymorphisms in the genes encoding for enzymes involved in the metabolism of benzene, e.g. CYP2E1, GSTM1 and GSTT1, can modify the toxicity of benzene (McHale et al 2012)
 - E.g. Garte et al. (2008) Five metabolic loci studied in Bulgarian workers/controls to study effect on susceptibility to adverse effects: 5.5-fold difference between 'good' and 'bad' genotype (based on DNA Single strand breaks)
- Possible involvement of detoxification pathways needs to be better incorporated into the framework.
- Other aspect is fold difference between genotypes. In current approach most likely accounted for by assessment factor. Next generation risk assessment will make use of more sophisticated assessment factors. Plus insight into uncertainty.

IN VIVO GENOTOXICITY


Overview of some available data from commonly used in vivo tests

- MN in vivo inbred/outbred mice positive (inhalation, oral)
- CA in vivo positive
- Oral TGR positive (bone Marrow)
- Inhalation TGR positive (lung and Spleen)
- Oral Comet many studies, mix of negative / positive in Bone Marrow
- Inhalation Comet positive in bone marrow

This is what we have, but what would we have done Exposure route – Inhalation only? Focus on Clastogenicity / Anugenicity versus mutation? – no TGR?

MODES OF ACTION

From McHale et al., Carcinogenesis, 2012

POD MODELLING / BMD APPROACH

Genomic damage endpoints:

- MN in vivo (inhalation) most sensitive (French et al. • 2015)
- Diversity Outbred mice: $BMC_{50} = 15 21.7$ ppm •
- B6C3F1 mice: BMC₅₀ = 43.2 79.6 ppm ullet

Derive human equivalent exposure level and Apply 'Assessment' or 'Uncertainty' factors (e.g. inter / intraspecies; study duration, etc.)

BUT: take into account other points of departure (nongenotoxicity; other genotoxicity PODs - keeping in mind mechanistic insight)

Exposure guideline value – relevant to purpose of assessment

KEY OBSERVATIONS ON FRAMEWORK

- Exposure impact on assessment
 - More complex Intended exposure versus indirect/unintended exposure
 - If driver for data needs Scope of assessment is critical General assessment versus specific worker?
- Importance of TK and other data
 - Study design / interpretation of genetox studies
 - Human susceptibility differences
- Study selection for genotoxicity POD
 - Use many, minimum criteria for study (group size/sex, dose ranges, etc.)
- What about PODs for other endpoints?
 - MoA for Benzene is complex
- Uncertainty factors can decrease as 'certainty increases'

KEY OBSERVATIONS VS CURRENT REGULATION

- Framework would diverge from current regulatory approach
- Different drivers
 - Framework = Risk assessment
 - Regulation = Classification and Labelling
- Can we move to avoiding the need for Cancer studies?

FINAL WORD

- It is possible to use Genetic damage for risk assessment
- The Framework demands:
 - Expertise
 - Making the best use of data and accepting that not every substance needs every study
 - Final outcome ultimately driven by purpose of assessment
 - Influenced by Exposure potential

ACKNOWLEDGEMENTS

HESI Genetic Toxicity Technical Committee

- Clean Sheet WG, esp. Industrial Chemicals subteam:
 - Nick Ball, Jan van Benthem, Bhaskar Gollapudi, Federica Madia, Stefan Pfuhler, Kristine Witt, Mirjam Luijten; Kerry Dearfield, Raffaella Corvi, Andrea Richarz
- Quantitative Analysis WG:
 - George Johnson, Paul White, Andreas Zeller
- Co-chairs & Management

– Maik Schuler, Paul White, Stan Parish, Lauren Peel

Next Generation Assessment of Genomic Damage – "The Clean Sheet"

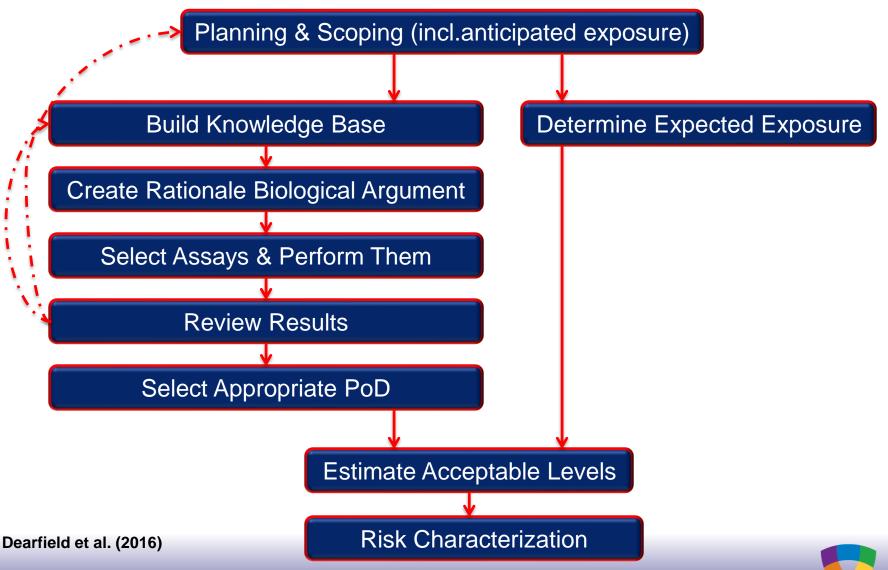
Pharmaceutical case study

Workgroup:

Laura Custer, Azeddine Elhajouji, Mirjam Luijten, Timothy Mcgovern, John Nicolette, Mark Powley and Véronique Thybaud

ILSI Health and Environmental Sciences Institute

PHARMACEUTICAL CASE STUDY ETOPOSIDE (VP-16-213)


CAS n°: 33419-42-0

Work still in progress:

- Etoposide selected as data-rich pharmaceutical
- Evaluation of the possible use and usefulness of available information for proposed framework on testing strategy for assessment of genomic damage

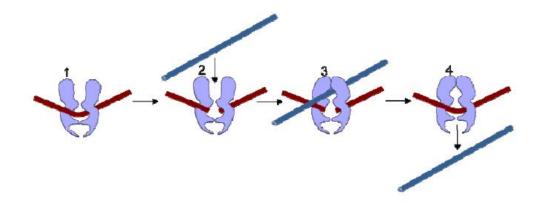
FRAMEWORK: TESTING STRATEGY FOR ASSESSMENT OF GENOMIC DAMAGE

ANTI-CANCER DRUG TOPOISOMERASE II INHIBITOR

- Semi-synthetic derivative of epipodophyllotoxin
 - Discovered in 1960's and registered in 1980's
- Widely prescribed for a variety of cancers
 - Often combined with other cytotoxic agents
- Inhibitor of topoisomerase II (Topo II poison)
 - Mechanism discovered in mid 1980's
 - Clinical target is mainly the α isoform
 - Increased in rapidly proliferating cells (S and G2/M phases)
- Secondary therapy related leukemia
 - Acute myeloid leukemia in patients and in infant after in utero exposure.

POPULATIONS (POTENTIALLY) EXPOSED TO ETOPOSIDE

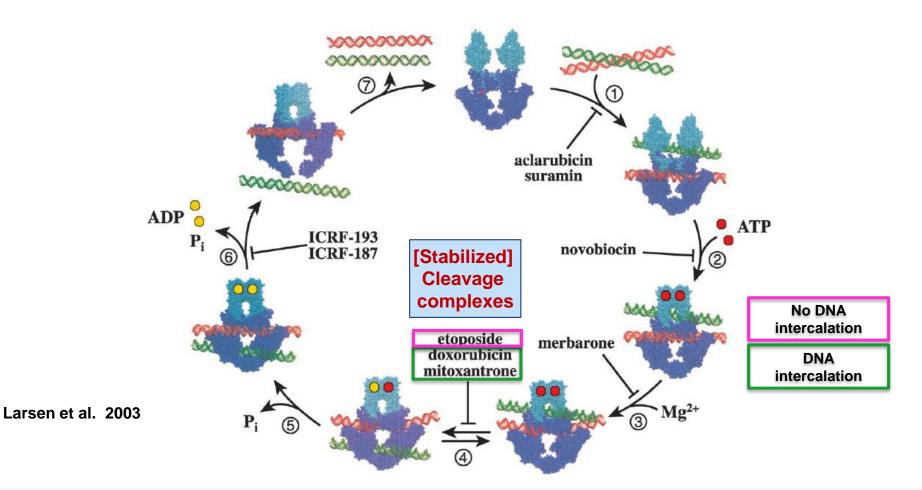
Population	Patients	Workers	General and environment
Exposure	Intended Concentrations in tissues large enough to allow inhibition of topoisomerase IIα	To be avoided / Need to define: - precautionary me - acceptable expos	easures
Points to consider	In utero exposure in pregnant women patients: unintended exposure	Handling during synthesis, packaging, and at hospital	Destruction and control of wastes at industrial sites and hospital


• Identification of the different (potentially) exposed populations is useful to define an appropriate strategy for risk characterization

– for

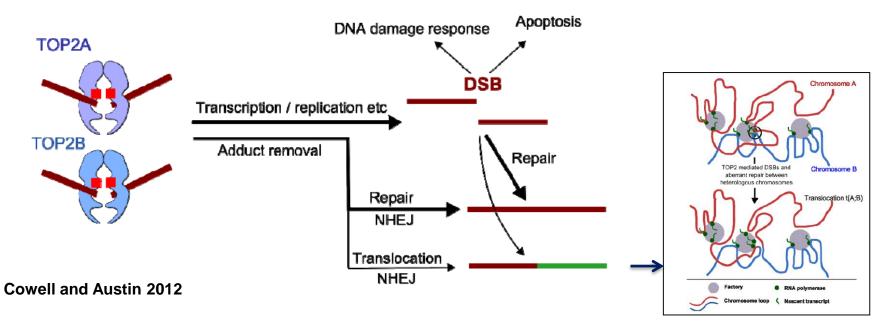
Planning & Scoping (incl.anticipated exposure)

THE CATALYTIC CYCLE OF DNA TOPOISOMERASE II



Cowell and Austin 2012

Figure 1. TOP2 mechanism. TOP2 cleaves both strands of a duplex DNA segment (brown, 1–2). A second DNA duplex (blue) passes through the transient enzyme-coupled break (2–3). The first duplex is then re-ligated and the products of the reaction are released from the enzyme (4).



TOPOISOMERASE II INHIBITORS

CONSEQUENCES OF TOPOISOMERASE II INHIBITION BY ETOPOSIDE

Figure 3. TOP2 Poisons, downstream events. TOP2 poisons inhibit the religation step of the TOP2 reaction cycle, leading to accumulation of covalent TOP2-DNA cleavage complexes. These lesions are cytotoxic and lead to activation of the DNA damage response and potentially apoptosis. Alternatively these lesions are repaired, largely through the non-homologous end-joining pathway. Translocations observed in therapy-related leukemia are presumed to occur as a result of mis-repair, joining two heterologous ends.

MECHANISM OF ACTION (MOA) TOPOISOMERASE II INHIBITION

Molecular mechanisms:

Low affinity for DNA

In

- No intercalation or binding
- Covalent binding to topoisomerase II and/or DNAtopoisomerase II complexes
- Stabilization DNA cleavage complexes through inhibition of DNA religation

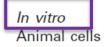
Cellular consequences:

- Blockade of the replication forks and transcription machinery
- DNA damage response
- Apoptosis
- DNA single and double-strand breaks
- DNA repair mainly NHEJ pathway
 - Possibly error prone NHEJ leading to translocation (e.g., mixed lineage leukemia (MLL) at locus 11q23)
- Knowledge on MoA: useful to understand contribution of each key event to dose response and risk characterization

and

Build Knowledge Base

Create Rationale Biological Argument



AVAILABLE GENOTOXICITY DATA AMES TEST

Test systems	Endpoints tests	Results	References
In microorganisms			
S. typhimurium TA100 (+/- S9)	Reverse mutation		Gupta <i>et al.,</i> 1987
S. typhimurium TA102 (+/- S9)	Reverse mutation	+	Gupta <i>et al.</i> , 1987
S. typhimurium TA1537 (- S9)	Reverse mutation	-	Ashby <i>et al.</i> , 1994
S. typhimurium TA1538 (+/- S9)	Reverse mutation		Ashby <i>et al.</i> , 1994
S. typhimurium TA98 (– S9)	Reverse mutation		Matney et al., 1985
S. typhimurium TA98 (+/- S9)	Reverse mutation	+	Ashby et al., 1994
S. typhimurium TA98 (+/- S9)	Reverse mutation	-	Gupta <i>et al.</i> , 1987
<i>S. typhimurium</i> (Other) (– S9)	Reverse mutation	+	Matney <i>et al.</i> , 1985
E. coli K 12	Forward/Reverse mutation	-	Gupta <i>et al.</i> , 1987
<i>E. coli</i> (other)	Reverse mutation	-	Gupta <i>et al.</i> , 1987
Neurospora crassa	Forward/Reverse mutation	-	Gupta, 1990

Choudhury et al. 2004

AVAILABLE GENOTOXICITY DATA IN VITRO

Muntjac cells CHO cells

Chinese hamster cells Chinese hamster V79 cells

Mouse lymphoma (not L1578Y) Mouse leukaemia L1210 cells

L5178Y cells, TK locus Mouse cells Cultured seminiferous tubules of rat Human cells

Human lymphocytes

Human lung carcinoma cells Other human cells

Choudhury et al. 2004

DNA damage/strand break/X-linked

Aneuploidy Aneuploidy Gene mutation, SCE, CA Cell death
SCE, CA, aneuploidy Deletion mutation & cell death SCE, cell death, DNA strand break Gene mutation DNA single-, double-strand breaks
Gene mutation CA Meiotic MN DNA damage/strand breaks/X-links
SCE CA
DNA breakage CA

Jeggo et al., 1989 Kerrigan et al., 1987 Pommier et al., 1988 Gupta et al., 1987 Ashby et al., 1994 Downes et al., 1991 Singh & Gupta, 1983 Lock & Ross, 1990 Berger et al., 1991 Pommier et al., 1988 Berger et al., 1991 Chatterjee et al., 1990 Gupta et al., 1987 Wozniak & Ross, 1983 Yang et al., 1987 Ashby et al., 1994 Ashby et al., 1994 Sjoblom et al., 1994 Kerrigan et al., 1987 Sinha et al., 1988 Long *et al.*, 1986 Tominaga et al., 1986 Maraschin et al., 1990 Tominaga et al., 1986 Long et al., 1986 Caporossi et al., 1993

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

AVAILABLE GENOTOXICITY DATA IN VIVO

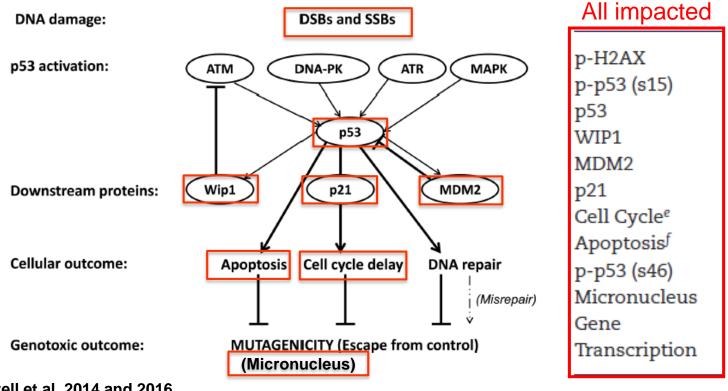
In vivo			Huang <i>et al.,</i> 1973
Mouse	MN	+	Nakanomyo <i>et al.</i> , 1986
			Ashby <i>et al.,</i> 1994
			Present study
	CA, SCE	+	Agarwal <i>et al.</i> , 1994
			Sieber <i>et al.,</i> 1978
	CA	+	Present study
Mouse spermatid	MN	+	Kallio & Lahdetie, 1993
Rat spermatogenesis	Spermatid MN	+	Lahdetie <i>et al.</i> , 1994

Choudhury et al. 2004

Other and more recent data

Rat reticulocyte

Pig-a, PIGRET


Mouse spleen

pKZ1 mouse mutagenesis model

- Yamamoto et al. 2016 Kimoto at al. 2016
- + Hooker et al. 2002

DNA DAMAGE RESPONSE IN VITRO DATA

Clewell et al. 2014 and 2016

- HT1080 human fibrosarcoma cell line (p53 proficient)
- 24 28 hour treatment

AVAILABLE GENOTOXICITY DATA SUMMARY

In silico:

- Negative prediction for Ames
- Positive prediction for chromosome damage in vitro and in vivo.

DNA damage:

 Single and double DNA strand breaks (γH2AX and Comet)

DNA damage response

Mutagenicity data In vitro:

- Conflicting results in Ames (no or small effects)
- HPRT negative In vivo:
- Pig-a assays negative
- HPRT negative

Clastogenicity data In vitro:

 Chromosome damage (MN, CA and SCE) and TK mutation tests positive in multiple cell types

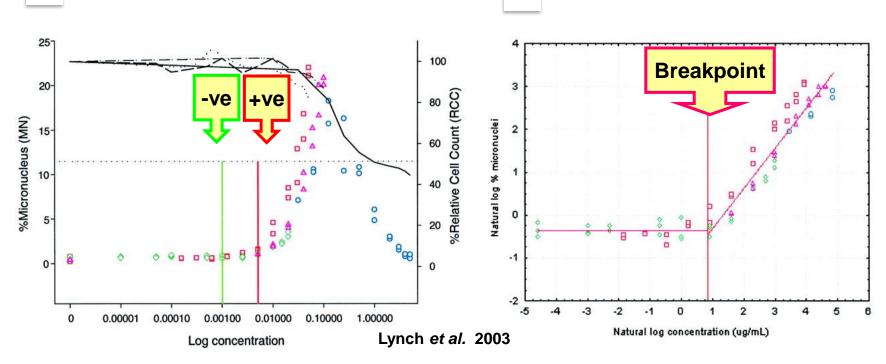
In vivo:

 Chromosome damage (MN and CA) test positive in bone marrow and spermatids

Recombination in vitro/ in vivo pKZ1 models:

• Increase at high doses / decrease at low doses

and

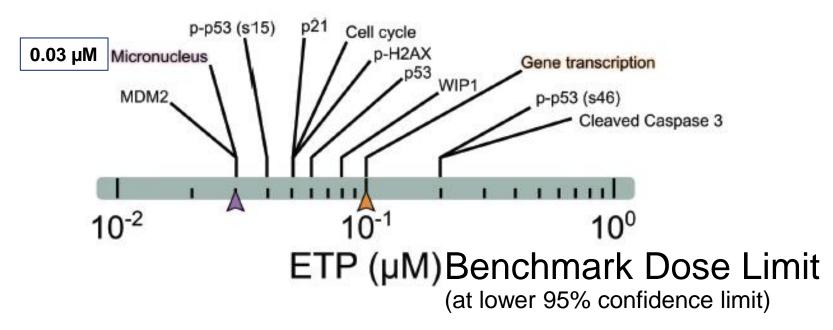

 Available genotoxicity: What would be the most relevant data for risk characterization in the context of the proposed workflow?

– In

Select Assays & Perform Them

Review Results

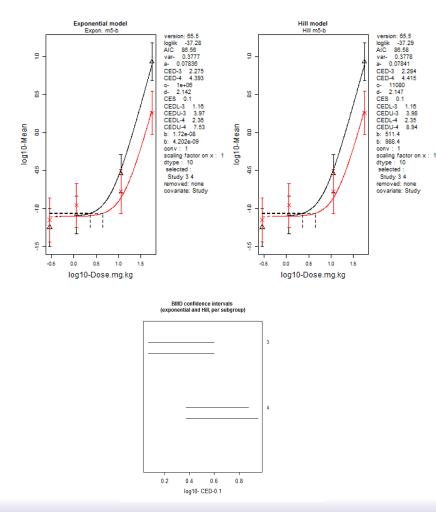
DOSE-RESPONSE IN VITRO DATA



- Micronucleus in mouse lymphoma L5178Y cells (p53 deficient)
- NOEL: 0.005 μg/mL (0.0085 μM)
- Breakpoint (Broken stick model): 0.00236 μg/mL (0.004 μM)

Molecular weight: 588.557 g/mol

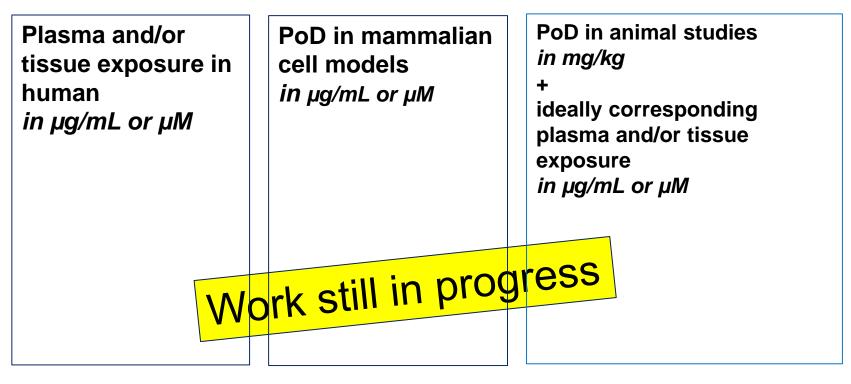
DOSE-RESPONSE IN VITRO DATA



Clewell et al. 2014 and 2016

- HT1080 human fibrosarcoma cell line (p53 proficient)
- Activation of p53 and formation of micronuclei: point-of-departure concentrations of etoposide in the range of 0.01 to 0.1 μ M.

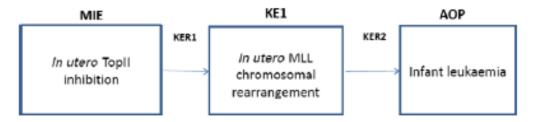
DOSE-RESPONSE IN VIVO DATA



- Bone marrow micronucleus in Fischer 344 rats, 14-day oral gavage, sampling 24h after last treatment (Garriot et al. 1995)
- Lower BMD confidence intervals in males
 - BMDL₁₀ 1.16mg/kg and BMDU₁₀ 3.97mg/kg
 - BMDL₅₀ 2.89mg/kg
 BMDU₅₀ 7.42mg/kg
- The only study identified to date adequate for the calculation of PoD, i.e., evaluating low enough doses to reach a no-effect dose (<5 mg/kg).

Analysis done by George Johnson

ANALYSIS OF DOSES AND DOSE-RESPONSES



• What are the doses and dose-response data available for risk characterization in the context of the proposed workflow?

AOP FOR ACUTE MYELOID LEUKEMIA IN INFANT AFTER IN UTERO EXPOSURE

Adverse Outcome Pathway (AOP): In utero DNA topoisomerase II inhibition leading to infant leukaemia

The biological plausibility for this AOP is strong. The relationship between DNA double strand breaks, MLL chromosomal translocation and infant leukaemia is well established. The same pathway is reproducible in chemotherapy-induced acute leukaemia in patients following treatment with etoposide, a known Topo II poison.

EFSA 2017

AOP FOR ACUTE MYELOID LEUKEMIA IN INFANT AFTER IN UTERO EXPOSURE

Concentration of etoposide	MIE In utero DNA topoisomerase II inhibition	KE1 In utero MLL chromosomal rearrangement	AO Infant Ieukaemia
0.01–0.1 μM, in vitro (TopII enzymes and cells in culture)	+++ (DNA damage response in various cells)	-	
0.1–1 µM, in vitro cell cultures	+++ (haematopoietic progenitor and stem cells)	+	
0.5–5 μM, <i>ex vivo,</i> mouse fetal liver HSC concentration ^(a)	+++ (inference from MLL cleavage)	+ (only MLL cleavage)	– (no leukaemia development)
Concentration of etoposide	MIE In utero DNA topoisomerase II inhibition	KE1 In utero MLL chromosomal	AO Infant Ieukaemia
	IIIIIDIdoli	rearrangement	
Max 5 µM, <i>ex vivo,</i> mouse fetal liver HSC concentration ^(a)	+++ (inference from MLL cleavage)	+ MLL fusions detected only in DNA repair deficient mice	 (no leukaemia development)

EFSA 2017

(b): Plasma concentration of etoposide cannot be directly extrapolated to the concentration at the active site. Probably the actual

active cellular concentrations of etoposide is much lower, perhaps 10% or less of the plasma concentration.

CONCLUSION

For etoposide risk characterization should consider

- Different precautionary measures depending on the exposed population
 - Intended versus unintended exposure and acceptable level of risk
- Non DNA-reactive mechanism of action that might result in chromosome damage such as heritable translocation
 - At intermediate exposures depending on the fidelity of repair mechanisms, and when cells are not eliminated through apoptosis
 - Likely complex kinetics and equilibrium
- The most appropriate endpoint(s) to derive a PoD and to avoid/minimize genotoxicity risk
 - To be further evaluated.

THANK YOU

