Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes

  • Publication Date :
  • Publication Type : Journal Article
  • Author(s) : Ribeiro A, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson J, Brock M
  • Journal Name : Frontiers in Pharmacology

Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties.

Full text online:

Download PDF Link

Contact Us

Health and Environmental Sciences Institute (HESI)
Phone: +1-202-659-8404
Fax: +1-202-659-3859

740 15th Street NW, Suite 600
Washington, DC 20005

Stay Informed

Sign up for our monthly e-newsletter.