Changes in the Metabolome and microRNA Levels in Biological Fluids Might Represent Biomarkers of Neurotoxicity: A Trimethyltin Study

  • Publication Date :
  • Publication Type : Journal Article
  • Author(s) : Imam SZ, He Z, Cuevas E, Rosas-Hernandez H, Lantz SM, Sarkar S, Raymick J, Robinson B, Hanig JP, Herr D, MacMillan D, Smith A, Liachenko S, Ferguson S, O'Callaghan J, Miller D, Somps C, Pardo ID, Slikker W Jr, B, Pierson J, Roberts R, Gong B, Tong W, Aschner M, J Kallman M, Calligaro D, & Paule MG
  • Journal Name : Experimental Biology and Medicine

Neurotoxicity has been linked with exposure to a number of common drugs and chemicals, yet efficient, accurate, and minimally invasive methods to detect it are lacking. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid have great potential due to the relative ease of sampling but at present, data on their expression and translation are lacking or inconsistent. In this pilot study using a trimethyl tin rat model of central nervous system toxicity, we have applied state-of-the-art assessment techniques to identify potential individual biomarkers and patterns of biomarkers in serum, plasma, urine or cerebral spinal fluid that may be indicative of nerve cell damage and degeneration. Overall changes in metabolites and microRNAs were observed in biological fluids that were associated with neurotoxic damage induced by trimethyl tin. Behavioral changes and magnetic resonance imaging T2 relaxation and ventricle volume changes served to identify animals that responded to the adverse effects of trimethyl tin. DOI: 10.1177/1535370217739859.

Contact Us

Health and Environmental Sciences Institute (HESI)

hesi@hesiglobal.org
Phone: +1-202-659-8404
Fax: +1-202-659-3859

740 15th Street NW, Suite 600
Washington, DC 20005

Stay Informed

Sign up for our monthly e-newsletter.