Application of 'Omics' Technologies to Assess Chemical Respiratory Allergy

Jon A. Hotchkiss, Ph.D.
Toxicology and Environmental Research and Consulting (TERC)
The Dow Chemical Company
Midland, MI

Overview

- Essential concepts
- Application of 'omics' in the characterization of respiratory sensitization/allergy
 - Elicitation models
 - Sensitization and challenge
 - Induction models
 - Leveraging the LLNA
- Why aren't all chemical sensitizers Respiratory Sensitizers?
- Closing thoughts...

Essential Concepts

- Dermal Sensitizers ≠ Respiratory Sensitizers
 - Th1- vs Th2-biased response
 - Contact dermatitis vs allergic respiratory effects
- Sensitizers have thresholds of <u>induction</u> and <u>elicitation</u> and differing levels of <u>potency</u>
- WoE approach currently used to distinguish respiratory sensitizers from dermal sensitizers
- Toxicogenomics can provide an <u>unbiased</u> global assessment of gene-expression and protein network alterations
 - Hypothesis generating
 - Insights into MoA

Path to Respiratory Sensitization

Induction/Sensitization

- Initial molecular interactions
 - Hapten-protein, epithelial cells, PRRs
- Dendritic Cell Activation
 - Initiating a Th2-bias
- Lymphoid Cell Activation
 - Proliferation, Differentiation

Elicitation

- Localization/Amplification of allergic response
- Epithelial Remodeling
 - Effector/Inflammatory Cell Influx
 - Mucous Cell Hyperplasia/Metaplasia
- Functional Pulmonary Responses
 - Airway hyperreactivity (AHR)
 - Reversible airflow obstruction

Can Genomics Enhance Identification of Respiratory Sensitizers?

- Two papers by Kuper et al.
 - Molecular Characterization of Trimellitic Anhydrideinduced Respiratory Allergy in Brown Norway Rats- Tox Path, 36: 985-998, 2008
 - The contact allergen dinitrochlorobenzene (DNCB) and respiratory allergy in the Th2-prone Brown Norway rat-Toxicology 246 (2008) 213–221
- Improve hazard identification and cross-species comparisons (rodent to human) of respiratory allergens through molecular characterization
- Whole genome analysis performed and results related to physiological and cellular parameters
- Compared respiratory and dermal sensitizer responses in same model system

Do Respiratory and Dermal Sensitizer **Induce Similar Responses?**

Sensitization – Challenge Model

- Brown Norway Rat (BN)
- <u>Respiratory sensitizer</u> = TMA; <u>Dermal Sensitizer</u> = DNCB
- **Experimental Groups**
 - Non-sensitized / non challenged (-/-)
 - Sensitized / non-challenged (+/-)
 - Non-sensitized / challenged (-/+)
 - Sensitized / Challenged (+/+)

Left Lung for RNA

Respiratory and Dermal Sensitizers: Different Functional Responses

Results- physiological and cellular endpoints

Endpoint	TMA	DNCB	
Lung Function	Altered responses in +/+ only	No challenge- specific effects	
Serum IgE	Increased in +/- and +/+ only	No increases in any group	
BAL	Increased EOS in +/+ only	No effect	
Lung immunohisto chemistry (IHC)	Increased IgE and CD4+ staining in +/+ only	Increased CD4+ in +/- and +/+ only	

Respiratory and Dermal Sensitizers: Differences in Gene Expression

Microarray Results

- Clustering showed a clear separation between +/+ and the other groups for TMA
 - Not DNCB
- No clear separation of -/-, +/-and /+ for either TMA or DNCB
- Gene groups/pathways by TMA
 - Chemokine activity, chemotaxis, inflammatory response, extracellular space/region, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway

Lung Remodeling Transcriptome Up-regulated Only by TMA

Microarray Results- DNCB vs TMA

Gene	DNCB Fold change +/+ vs -/+	TMA Fold change +/+ vs -/+	
Ccl2 (MCP1)	11	214	
Ccl4 (MIP 1 beta)	5	267	
CcI7 (MCP3)	16	294	
Ccl17 (TARC)	97	44	
Arg1	NS	8	
Timp1	NS	12	
II1b	NS	6	
II6	NS	38	

- Chemokine responses much greater in magnitude for TMA when compared to DNCB
- Lung remodeling genes were unique to TMA

Genomics Show Promise to Differentiate Respiratory and Dermal Sensitizers

- Gene expression consistent with distinct physiologic and functional responses to TMA and DNCB
- Lung remodeling genes up-regulated in +/+ and -/+ TMA rats consistent with lung remodeling observed in early development of asthma in man
- Cytokines up-regulated in TMA +/+ BN rats are increased in sputum, BAL and exhaled air of human asthmatics
 - Toll-like receptor pathway activated in inflammatory conditions, like asthma, in man
 - Strongly up-regulated Arg-1 linked to Th2 cytokine expression and STAT6-dependent pathways
- Early lung remodeling may be a useful biomarker of respiratory sensitizers in animal models

Can Proteomics Enhance Identification of Respiratory Sensitizers?

(HoeSu Jeong, et al. J. Korean Med Sci 20:579-85, 2005)

- Mouse model of allergic asthma
- Lung tissue proteins separated by 2DE
- Analyzed by MALDI-TOF MS
- 15 differentially expressed proteins
 - 5 were down-regulated in allergic mice
 - 8 were up-regulated in allergic mice
- 4 proteins associated with oxidation and reduction
 - Cytochrome b5, peroxiredoxins 1,2, and 6
- 3 classified as structural proteins (airway remodeling)
 - Rho-GDH dissociation inhibitor β, myosin light chain 2 and myosin binding protein C
- 2 proteins YM1 and YM2 are mammalian chitinases, induced by IL13
 - associated with human asthmatics

Proteomic Analyses Complement Genomic and Functional Analyses

- Strength of proteomics is ability to evaluate multiple compartments in humans and animal models for translational investigations
 - Sputum, BAL, blood
- Good correlation of functional responses with protein expression
 - Mammalian chitinases, inflammatory proteins, secretory products
- Additional studies needed to assess utility to differentiate respiratory and dermal sensitizers
 - Multi-compartment analysis in chemical-induced asthma
 - Haenen et al. (2010) J. Proteome Res 9:5868-5876
 - Functional effects correlated with markers of neutrophilic inflammation and oxidative stress in lymph node, lung and BAL

Remember... What You Find Depends On When You Look

- Aerosol exposure of mice to Ova or saline for 1, 5, or 10 wks (ST, IT, LT groups)
- Functional, inflammatory, morphologic and gene expression changes measured
- Genes for cell division up-regulated during ST and IT
 - Down regulated during LT
- Genes linked to growth, differentiation, matrix metalloproteinases/collagens upregulated in IT group
- Genes linked to mucous secretion progressively amplified

Di Valentin et al., (2009) Am J Physiol Lung Cell Mol Physiol 29: L185-L195

Can Genomics Enhance Identification of Respiratory Sensitizers?

Objective

- Expand on preliminary research on a toxicogenomic approach to enhance the LLNA- Boverhof et al. 2009- Tox Sci 107(2), 427–439
- Apply this approach to a more diverse array of chemicals to more fully assess the ability to:
 - Identify transcript markers of proliferation/potency
 - Distinguish non-sensitizing irritants from sensitizers
 - Differentiate dermal and respiratory sensitizers
- Test materials evaluated
 - Dermal sensitizers
 - DNCB (Dinitrochlorobenzene) and HCA (alpha-Hexylcinnamaldehyde)
 - Respiratory sensitizers
 - TMA (trimellitic anhydride) and OPA (ortho-phthalaldehyde)
 - Non sensitizing irritants
 - MS (methyl salicylate) and NA (nonanoic acid)

Approach

- Keep the toxicogenomic data anchored to the traditional LLNA design and endpoint
- Dose Response
 - 3 doses
- Endpoints:
 - ³HTdR
 - gene expression

Boverhof et al., 2009- Tox Sci Adenuga et al., 2012- Tox Sci

Dose Selection Is Important

- Sensitizers vary in potency
 - Doses for sensitizers were chosen to yield comparable LLNA responses across the chemicals.

Chemical	Dose			
	Low	Mid	High	
DNCB	0.04%	0.20%	1.00%	
HCA	7.50%	15%	45%	
OPA	0.02%	0.04%	0.20%	
TMA	0.20%	1%	5%	
MS	20%	40%	80%	
NA	20%	40%	80%	

Data Mining/Stratification Identified Similarities With Elicitation Model

Respiratory Sensitizer-specific Transcripts Identified

AKR1c18 (aldo-keto reductase) – promotes Th2 cell survival

- Galectin-7 Cell-cell and cell-cell matrix interactions
- Mcpt1 and 8 mast cell protease 1 and 8
- Frzb Frizzled-related protein cell differentiation
- Cd160 NK cell and CD8 T lymphocyte marker
- IL4 promotes development of Th2 bias

Genomics Show Promise to Differentiate Respiratory and Dermal Sensitizers

- Gene expression changes during sensitization (induction-phase) may enhance weight of evidence approaches to distinguish
 - Sensitizers from Irritants
 - Respiratory Sensitizers from Dermal Sensitizers
- Need to expand the LMW chemical data-set to confirm-extend gene expression signatures
- Expand analyses to upper/lower airway tissues to explore mucosal gene expression signatures

Question....

Why aren't all chemical sensitizers Respiratory Sensitizers?

Initial Molecular Interactions and Airway **Mucosal Responses May Drive Selective** Th2-bias and Respiratory Sensitization

ILC2 Can Facilitate Allergic Sensitization

J. Allergy Clin Immunol 13:1142-1148

Closing Thoughts....

- A weight of evidence approach is currently required to differentiate Respiratory from Dermal sensitizers
 - Regulatory frameworks accept that dermal sensitizer assays will detect both dermal and respiratory sensitizers
- It is essential to develop and validate robust assay systems to distinguish <u>Respiratory Sensitizers</u> from <u>Dermal</u> <u>Sensitizers</u> and <u>Irritants</u>
- A science-based determination of sensitizer <u>potency</u> and <u>thresholds of sensitization/elicitation</u> is critical to address possible classification as SVHC under the "equivalent level of concern" route set out in Article 57(f) of REACH
- Omics' show great promise to identify key cellular and molecular events relevant to development of an adverse outcome pathway for respiratory sensitizers

Thank You

Questions?