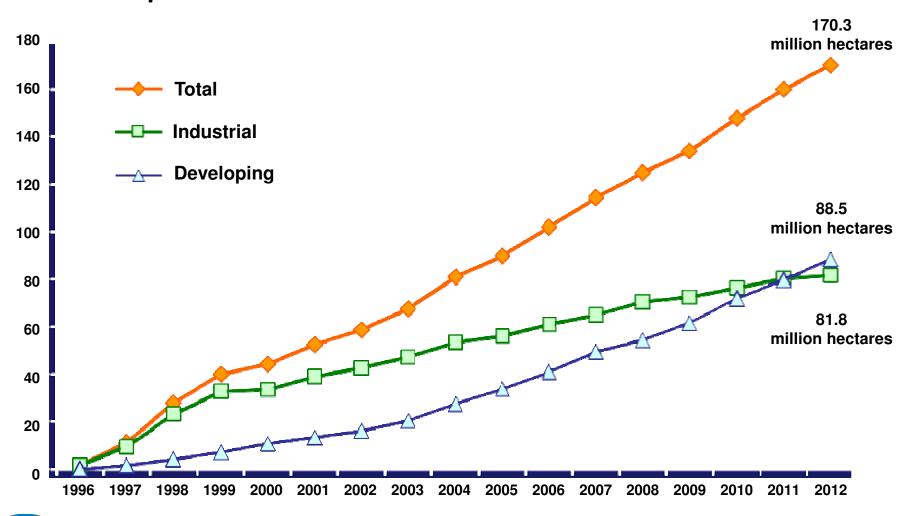
Biotechnology Protein Safety Assessment: A GM Case Study



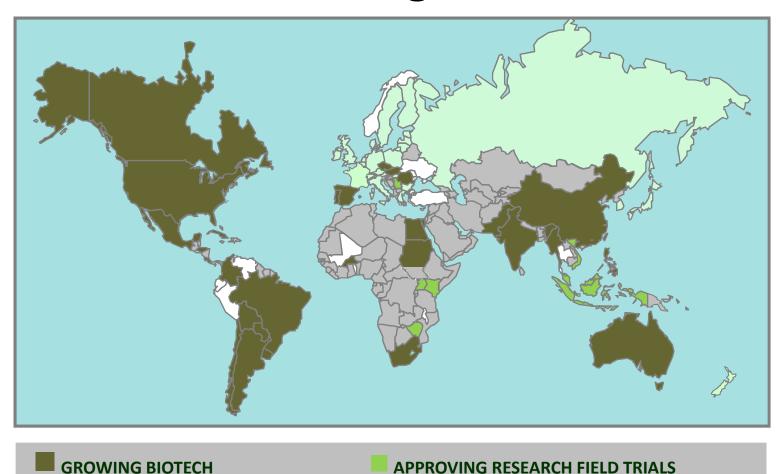
Jason Ward, PhD
Molecular Characterization
and Allergy Lead
Monsanto Company
HESI, PATC

April 16, 2013

ILSI Health and Environmental Sciences Institute

In 2012 the total area planted globally with biotech crops increased 6% to 170 million hectares

Adoption of GM crops has economic and environmental benefits


- Adoption of GM crops has resulted in:
 - Reduction in insecticide (213 million kg*) and herbicide (230 million kg*) active ingredient use
 - Increased use of more environmentally benign products
 - Decreased fuel consumption
 - Decreased green house gas emissions
 - Changing in farming systems

^{*} Estimated total reduction from 1996-2010.

Source: Brookes, G and Barfoot, P., 2012

Regulatory Systems have been established throughout the world

Source: James, C., 2012 and Monsanto

PROCESS UNDER DEVELOPMENT OR DELAYED

Overview of the safety assessment of biotech crops

- The safety assessment includes:
 - Detailed characterization of the insertion
 - Characterization of the inserted protein
 - History of Safe Use
 - Allergy Safety Assessment
 - Protein Safety Assessment
 - Comparison of composition and nutritional components
 - Phenotypic and ecological assessments

Roundup Ready® 2 Yield soybeans

- Roundup Ready® 2 Yield soybeans are a second generation weed control product
 - Provide in planta tolerance to Roundup[®] brand agricultural herbicides
- Roundup Ready[®] 2 Yield soybeans provide herbicide tolerance by expressing the CP4 EPSPS protein
 - CP4 EPSPS is derived from Agrobacterium sp strain
 CP4

History of Safe Use: CP4 EPSPS

- Mode of Action is well understood
 - EPSPS enzymes catalyze a key step in the biosynthesis of aromatic amino acids
 - Roundup® brand herbicides bind to endogenous EPSPS proteins which inhibit amino acid production and results in cell death
 - CP4 EPSPS protein functions like other endogenous EPSPS enzymes, however it has a reduced affinity for Roundup[®] herbicide binding
 - The reduced affinity allows CP4 EPSPS to continue aromatic amino acid biosynthesis in the presence of Roundup® herbicides
 - The ability to continue amino acid biosynthesis confers tolerance

History of Safe Use: CP4 EPSPS

- CP4 EPSPS is structurally and functionally similar to other EPSPS proteins safely consumed in food and feed
 - EPSPS enzymes are ubiquitous in plants and microorganisms and are safely consumed
 - CP4 EPSPS is functionally equivalent to other food derived EPSPS enzymes except for its tolerance to Roundup[®] herbicides
- A number of CP4 EPSPS containing crops have been commercialized (first in 1996) and no adverse effects have been documented

Allergy Safety Assessment for Biotech Crops

- Purpose: Determine if the inserted protein is a known allergen, is cross reactive with a known allergen, or could become an allergen
 - No definitive test of protein allergenicity exists
 - 'Weight of evidence' approach recommended by Codex guidelines is used to determine the allergenic potential of the inserted protein
 - Is the protein from an allergenic source?
 - Is the protein similar to known allergens?
 - What is the exposure to the protein?

Summary of the Allergy Assessment

- Does the protein originate from an allergenic source?
 - CP4 EPSPS protein originates from Agrobacterium, which is not considered an allergenic source
- Does the CP4 EPSPS protein have sequence similarity to any known allergens?
 - No similarity with any allergens at the:
 - ≥35% identity over 80 or greater amino acids threshold
 - E score cut-off of ≤1e-5
 - No matching contiguous 8 amino acid segments
 - Allergen database (allergenonline.org) has been established and is updated annually and curated by international academic allergy experts
 - Bioinformatics assessment is repeated annually

Summary of the Allergy Assessment

- What is the potential exposure to the inserted protein?
 - CP4 EPSPS is expressed in very low levels in the grain (less than 0.05% of total protein)
 - CP4 EPSPS is readily digested in SGF
 - >98% of CP4-EPSPS was digested within 15 seconds

 Conclusion: CP4 EPSPS does not pose a significant allergenic risk.

Summary of Protein Safety Assessment

- Is the donor organism safe?
 - Agrobacterium species are not known for human or animal pathogenicity and are not known to be allergenic
- Does the inserted protein have a history of safe use?
 - CP4 EPSPS is structurally and functionally similar to other EPSPS proteins safely consumed in food and feed
 - CP4 EPSPS containing crops have been commercialized (first in 1996) and no adverse effects have been documented

Summary of Protein Safety Assessment

- Does the inserted protein exert toxicity?
 - Bioinformatics comparison demonstrates that CP4 EPSPS is highly unlikely to share any structural homology to any known toxins
 - As a confirmation CP4 EPSPS was administered as a single dose by gavage to mice at 572 mg/kg and had no adverse effects
- Conclusion: No evidence that CP4 EPSPS is likely to pose a safety risk.

Summary of the Characterization of CP4 EPSPS

- CP4 EPSPS has a well characterized mode of action
- CP4 EPSPS has a long history of safe use
 - CP4 EPSPS is structurally and functionally similar to other EPSPS proteins safely consumed in food and feed
 - CP4 EPSPS containing crops have been commercialized (first in 1996) and no adverse effects have been documented
- CP4 EPSPS has no sequence similarity to known allergens
- CP4 EPSPS is readily digested in SGF
- CP4 EPSPS does not exert toxicity
- Conclusion: There is no evidence that CP4 EPSPS is likely to pose a safety or allergenic risk.

References Cited in this Presentation

- Brookes, G and Barfoot, P. (2012). Global Impact of Biotech Crops, Environmental effects, 1996-2010. GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:2, 129-137.
- James, C. (2012). ISAAA Brief 44, Global Status of Commercialized Biotech/GM Crops: 2012.

