State of Science for Respiratory Sensitization

Dose-Response Models for the OEL-Derivation of Chemicals

Jürgen Pauluhn

Global Drug Discovery, Bayer HealthCare, Bayer Pharma AG, Wuppertal, Germany Hannover Medical School, Hannover, Germany

ILSI/HESI-Workshop on Assessment of Respiratory Sensitization 28-29 May 2014, Alexandria, VA

Outline

- Hypotheses, mechanisms & etiopathological relationship of induction and elicitation
- □ Test approaches & protocols
- Respiratory irritation vs. sensitization vs. allergy
- Metrics & dose
- □ Derivation of OELs for irritant asthmagens such as TDI-vapor & MDI-aerosol

Hypothesis: What do we intend to model and how do we define Sensitization?

What can be quantified and controlled?

Skin/Lung Induction: Dose-Metric-Regimen

- Biomarker of susceptibility vs. adversity
- Compartmentalization
- Inflammation response to irritant and/or allergic stimulus
- Neurogenic modulation
- Dose metrics and induction sitespecific constraints
- Interrelationship of irritation, sensitization, and elicitation of sensitization
- Human relevance

Compartmentalization of PMNs in the BNR-Ova-Model

Serum total IgE an Index of Inflammation or Allergy?

Topical induction - 4 x 40 mg MDI/m³ x 30 min

Low/high: $40/150 \mu I$ MDI on both days 0 and 7

■ The most discriminatory endpoint of respiratory allergy is PMN in BAL (in BN rats).

Situation more complex for reactive Vapors: C vs. C x t - Relationships

- Reactive aerosols: Site of deposition is aerosol size-dependent, the lung dose and POD is <u>Cxt-dependent</u>.
- Reactive vapors: The degree of penetration into lower airways is <u>C-dependent</u>. C determines the depth of penetration into the lung & <u>Cxt the site-specific dose</u>.

Respiratory Tract Irritation: Similarities to Skin? Definitely NOT!

MDI Aerosol - Rats

Regulatory stumbling blocks:

- \square RT = ET + T + P [US: separated, EU: combined]
- Aerosols & vapors dosimetrically different. Also the response to injury is entirely different
- ET-T-P irritation sites have to be identified

Respiratory Tract Irritation: Selection of Challenge Cxt for Aerosols

Protocol:

- □ Single 6h exposure of naïve BNor Wistar rats to MDI-aerosol
- □ C-dependence of BAL-protein after and 1-day post-exposure
- Acute LRT-threshold: 0.5 mg/m³ x 6 h (180 mg MDI/m³ x min)
- Minimal LRT-threshold 3 mg/m³
 x 6 h (1080 mg MDI/m³ x min)
- Converted to challenge duration: 36 mg/m³ x 30 min
- Experimental validation of Cxt needed

Searching for the POD of Airway Irritation for Aerosols

The Induction of Phenotypes of Asthma require a repeated Challenge Protocol

MDI aerosol: optimally 4 inhalation challenges are required to demonstrate the asthma response

Sensitization Efficacy (MDI): Topical vs. Inhalation

<u>Topical (2x) vs. Inhalation (5x):</u> Topical (SD. \pm 30%) > inhalation (SD. \pm 50%); high-concentration x short-time protocol > low-concentration x long-time protocol; elicitation Cxt-dependent

Compartmentalization and Impact of Vehicle: BNR-MDI-Model

Th₂-Priming

Topical induction - 4 x 40 mg MDI/m³ x 30 min

SEBA: di-n-octyl sebacic acid ester (20%)

AOO: acetone:olive oil (20%)

MDI: neat (same dose in all groups)

Pro-inflammatory cytokines show different vehicle-effect relationships from one compartment to another.

Th₁-Priming

Summary: Rationalization of Protocol

Topical induction – 4 x 40 mg MDI/m³ x 30 min

SEBA: di-n-octyl sebacic acid ester (20%)

AOO: acetone:olive oil (20%) MDI: neat (same dose in all groups)

- Each compartment of the lung gives a different read-out.
- The response in LALNs using different vehicles for sensitization shows variable outcomes.
- BAL-PMN most appropriate effect-based discriminator for both irritation and sensitization.
- Lung priming & elicitation threshold: repeated encounters above irritation threshold Cxt required.

Searching for the POD of Airway Irritation of Vapors: Acute Exposure (TDI)

- C MUST be high enough to reach the alveoli
- The depression of ventilation MUST converge against stable breathing

Searching for the POD of Airway Irritation of Vapors: Recurrent Exposure (TDI)

- □ Single exposure: POD = $0.03 \times RD_{50} \sim 0.1 \text{ ppm}$.
- □ Repeated exposure: POD based on BMDL(95%) = 0.035 ppm (1st day) and 0.028 ppm (4th day).
- Reason: apparent expression of TRPA receptors on pulmonary C-fibers.

Searching for the POD of Airway Irritation of Vapors: Recurrent Exposure (TDI)

Conceptual Approach for a Respiratory "Sensitization"/ Elicitation Protocol for TDI-Vapor

- □ Prevailing experimental evidence suggests that "Respiratory Sensitization" is a multi-step process depending on two independent processes:
 - Induction of a state of increased susceptibility to future encounters. This process is potentially reversible (apart from 'memory effect').
 - The induction of this process requires irritant (inflammatory) encounters at high doses. This can most suitably be achieved by skin exposure(s).
 - This state is evidenced by the determination of pro-inflammatory factors which do not necessarily distinguish the irritant and allergic etiopathologies.

Conceptual Approach for a Respiratory "Sensitization"/ Elicitation Protocol for TDI-Vapor - Continuation

- □ Hence any "Respiratory Sensitization" can only be revealed and quantified by "Respiratory Elicitation" in animals "predisposed to asthma"
 - Repeated inhalation elicitation encounters above the lung irritant threshold dose (Cxt) are needed for progression & aggravation.
 - The induction of this process requires multiple highly rationalized irritant (mildly inflammatory) encounters at defined Cxt's to produce an 'asthmatic rat'.
 - The elicitation-threshold in asthmatic rats is irritation (Cxt)-dependent.

Comparison of Respiratory Sensitization/Elicitation Protocols for TDI-Vapor

- <u>Aerosols:</u> Dosimetrically & physiologically reproducible (MDI)
- Vapors: Dosimetrically & physiologically very complex (TDI)
- □ Hence, C_{const} x t_{var} protocols are deemed to be most robust for both aerosols & vapors

Conceptual Approach for a Respiratory "Sensitization"/ Elicitation Protocol for TDI-Vapor

<u>Pre-step:</u> Irritation inhalation assays as typically used in inhalation toxicology as ancillary studies for the dose-selection of repeated inhalation exposure studies.

Step I: Elicitation threshold after first inhalation challenge

Step II: Elicitation threshold after repeated inhalation challenges

Translational patho(physio)logical Hallmarks of Human and BNR-Asthma

Dose-Response Analysis: TDI-Vapor & MDI-Aerosol

- **TDI:** The acute irritant threshold, which is 0.035 ppm x 6h for TDI, corresponds to \sim 10-times the elicitation threshold of 1000/(7x360) mg/m³ x min = 0.4 ppm x 6h.
- MDI: The acute irritant threshold, which is 0.5 mg/m³ x 6 h for MDI (180 mg/m³ x min), corresponds to ~2-times an elicitation threshold of 90 mg/m³ x min.
- These apparent differences in potency are related to dosimetric differences (vapor vs. aerosol)

MDI: Dosimetric Adjustment & Species Extrapolation

RTS: Respiratory Tract Sensitization; 1) Leroyer et al. (1998) Specific bronchoprovocation test

TDI: Dosimetric Adjustment & Species Extrapolation

 $20 \frac{mg}{m^3} (RD_{50}) \Rightarrow 0.03 \times 20 = 0.6 \frac{mg}{m^3} (URTI, mice)$ Irritation threshold $-POD_{repeated} = 0.21 \frac{mg}{m^3} \times 360 \min(URTI, rat)$ $0.35 \, mg \, / \, m^3 \times 30 \, \text{min} \rightarrow \approx 0.35 \, \frac{mg}{m^3} (URTI)$ Irritation threshold human $\frac{1000 \, mg \, / \, m^3 \times \min}{480 \, \min} \rightarrow 2.1 \frac{mg}{m^3} \times 8 \, hrs(RTS)$ 8-h workday adjustment_{sensi} $\stackrel{2.1 mg/m^3}{3_{MV} \times 3_{retention}} \rightarrow \approx 0.021 \frac{mg}{m^3} (0.003 ppmV)$ Dosimetric adjustment $\frac{0.13 \, mg \, / \, m^3 \times 90 \, \text{min}}{480 \, \text{min}} \rightarrow 0.024 \, \frac{mg}{m^3} \times 8 \, hrs \, (0.0034 \, ppmV)$ $\approx \frac{0.21}{7 \times 3_{MV} \times 3_{ret}} \left[\frac{mg}{m^3 \times 8 hrs} \right]_{URT} = 0.003 \, ppmV$ Susceptibility adjustment²_{human} OEL irritation-based OEL respiratory sensitization-based $\approx 0.003 ppmV$

RTS: Respiratory Tract Sensitization; 1) Henschler et al., 1962; 2) Vandenplas et al. (1992), Sastre et al. 2003); RD₀: Barrow et al. (1978)

Summary

- □ The major prejudice of "Respiratory Sensitization" is believed to depend on inhalation sensitization. It is likely more an inhalation priming of already predisposed/sensitized subjects.
- □ The protocols devised duplicate the key hallmarks of human asthma, including the structure & dosing protocols used in human inhalation bronchial challenges.
- □ All endpoints measured are quantifiable in terms of dose and integrated effect.
- □ For MDI-aerosol and TDI-vapor the dosimetrically-adjusted irritant dose was remarkably close to the effective human challenge dose.
- □ To be effective, elicitation doses must be above the irritant threshold Cxt to prime the respiratory tract for "Respiratory Sensitization".

Conclusion

- □ Respiratory sensitization requires recurrent irritant inhalation exposures to induce asthma.
- Both irritation and elicitation of respiratory sensitization are clearly threshold dose- (and NOT concentration-) dependent.
- □ Protection from irritation (conventional basis of NOAEL) protects also from "sensitizing" the respiratory tract.
- OELs and DNELs can be derived using standard inhalation bioassays.
- Proof-of-principle studies may require a slightly higher degree of sophistication.