Big Data: Exploring Possibilities to Improve Predictive Exposure Capabilities

R. Zaleski, T. Buckley, H. Zenick

HESI Emerging Issues Session
June 2015, Washington, D.C.

ILSI Health and Environmental Sciences Institute
Each axis appearing on the 2010-2020 HESI Combined Challenges Map is a continuum. All issues on the map are of high importance/impact based on prioritization by the participants in the 2009 HESI mapping exercise. “Relative impact” is a qualitative measure of importance among high priority topics. The location of issues along the “time” continuum is an approximation of when the topic is likely to become a major issue in the timeframe from 2010 to 2020.
Why Exposure Science?

No exposure, no risk – period.

Risk = *F*\(_n\) (Hazard, Exposure)

Exposure is the **foot** of Risk Assessment

Expanded Needs for Exposure Information

NRC 2012: Demands for exposure science:

Plays a key role in public health protection, environmental regulation, urban and ecosystem planning, and disaster management

Societal
- Population health
- Economic security
 - Well-being
- Sustainable - intergenerational

Policy/Regulatory
- Risk assessment
- Risk management
- Accountability
- Sustainable actions

Health/Environmental
- Human health
- Ecosystem health, function, services

Market
- Life cycle impacts
- Sustainable solutions
Many Exposures - Measurement Infeasible

Widespread dispersive (air, water, soil)

Point source emissions (facilities)

Direct exposures (food, products)

Expanded predictive capability is key!
Goal of proposed project:
• Increased ability to predict exposures
• Greater confidence in predicted estimates
Utilize Relevant Emerging Exposure Technologies and Infrastructure

• Technology developments to track sources, concentrations and receptors at multiple scales
 – Analytical methodologies for broad chemical arrays
 – Ubiquitous and embedded sensing
 – Biomonitoring

• Methods and tools for analysis
 – Geographic Information Systems
 – Multi-scale exposure modeling
 – Statistical methods and tools for predictive modeling

• Information management
 – Publicly available systems for data sharing
 – **Increased availability of large datasets and integrative methods**
 – Exposure Ontology
Big Data, Informatics, and Exposure Science

• Increasing informatics capability to collect and generate large data sets from multiple linked sources

• Challenges include:
 – Spatial, temporal differences
 – Linking different data sets in a useful way
 – Confidentiality
 – Data quality
 – Data identification
 – Data access

• Exposure relevance: While generated for other reasons (marketing, social networking), identified sources can include information relevant to exposure, including product purchase, locations or purchase, activity patterns, product composition
 – Could it be used to improve exposure predictions?
This Proposal:

• Focus on consumer exposures:
 – Focus scope to be actionable/achievable
 – Direct product use indicated to be important exposure source (ExpoCast, ExpoDat)

• Design so findings relevant to approaches for obtaining, integrating and applying big data in multiple scientific fields, not just exposure

• Generate information that can be used to:
 – Provide a generic framework to help identify and integrate big data sets
 – Increase understanding of exposures
 – Test predictive exposure models
 – Potentially expand application of predictive models
Propose Two Phases:

• Phase I: Assemble interdisciplinary team
 – To identify potential data sets and considerations for use

• Phase II: Interdisciplinary workshop
 – To evaluate identified sets and generically address challenges related to access and integration
Proposal Phase 1: Establish Team

- Formation of new HESI committee
 - Engage RISK21 participants given expertise and broad experience
 - Consider additional scientific disciplines

- Committee charge to identify:
 - Types of data would be useful for improving consumer exposure prediction
 - Novel sources of these data, building upon existing work:
 - ExpoCast
 - HESI sponsored ISES symposium on Development and Application of Predictive Models from Big Data
 - Challenges to collecting and integrating big data
Proposal Phase 2: Workshop

• Evaluate data sources and address challenges for data use

• Data sources
 – What is available
 – Which are most relevant
 – Strengths/limitations for exposure science application

• What would be needed to use these data:
 – Confidentiality
 – Cost
 – Developing meaningful linkages between data sets collected under differing spatial and temporal conditions
 – Utility/quality of info collected for other purposes
 – Appropriate application domains
 – Building partnerships to enable data access
Anticipated Deliverables

- Develop white paper based upon workshop that:
 1) Identifies and assesses big data sources for exposure assessment
 2) Summarizes ways to address issues of how to use these data for EA (as listed above),
 3) Suggests approaches to address generic challenges of big data use, and
 4) Makes recommendations for how one specific data set could be tested and evaluated for contribution

- Follow up: Test the data set described in the workshop report for usefulness in testing/improving exposure estimates
Potential Advancements from Project

Findings can be used to:

• Contribute to success of efforts to utilize and integrate big data in general (any scientific area)

• Evaluate and improve exposure models
 – Approach used here will be directly applicable for consumer exposures, could form general basis of approach to assess other exposure sources
 – Potential to expand predictive capability
 – Reduce uncertainty in exposure estimates
Proposal Genesis

• Based upon 2014 proposal, modified based upon feedback:
 – Smaller, more focused “pilot” size
 – Big data aspects particularly relevant

• 2014 proposal key elements:
 – Gather information on emerging technologies and data sources including strengths and weaknesses
 – Examine how these multiple data sources and new technologies can be integrated using a systems approach
 – Provide a case example of such integration
 – Determine if systems approach improves the predictive value of exposure models
Thank you - Questions?