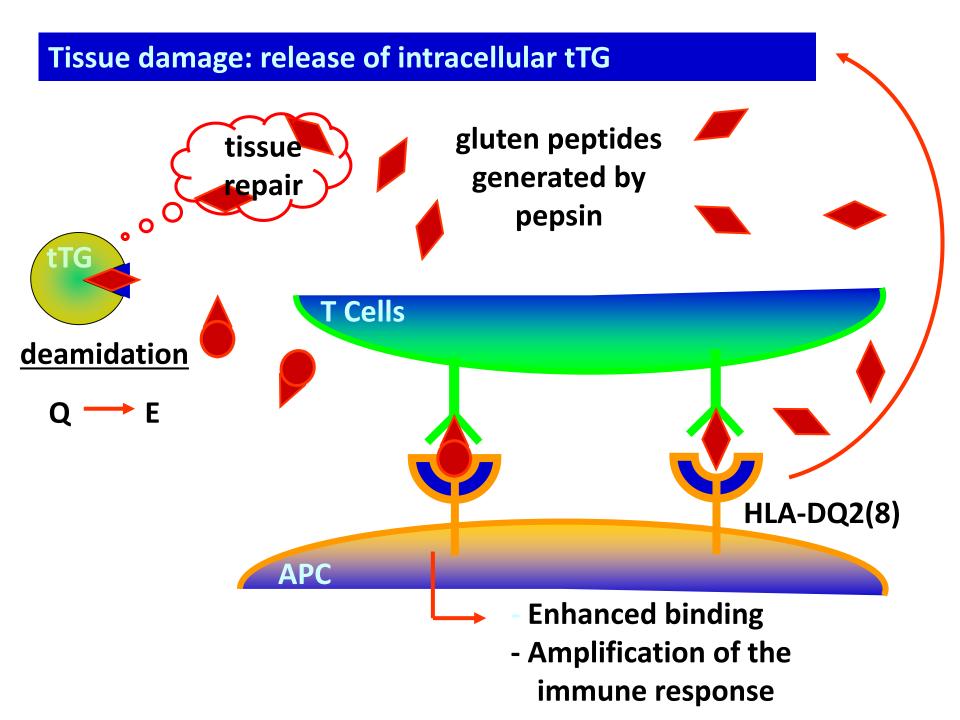

Predictive tools in the risk assessment of new proteins in GMOs: the case of Celiac Disease

Frits Koning LUMC, Leiden, The Netherlands Celiac Disease Consortium


Gluten proteins in wheat HLA-DQ2/8 T-cells

Gluten specific T cell response in the small intestine

LGQEQPFPPEQPYPQPQPFPSELPYLQLQPFPQPQL

LGQQQPFPPQQPYPQPQPFPSQLPYLQLQPFPQPQL

QXXP	no
QXPY or QXPF	yes

 $\Lambda VV \Lambda$

OXP yes

no modification OP

Characteristic gluten sequences:

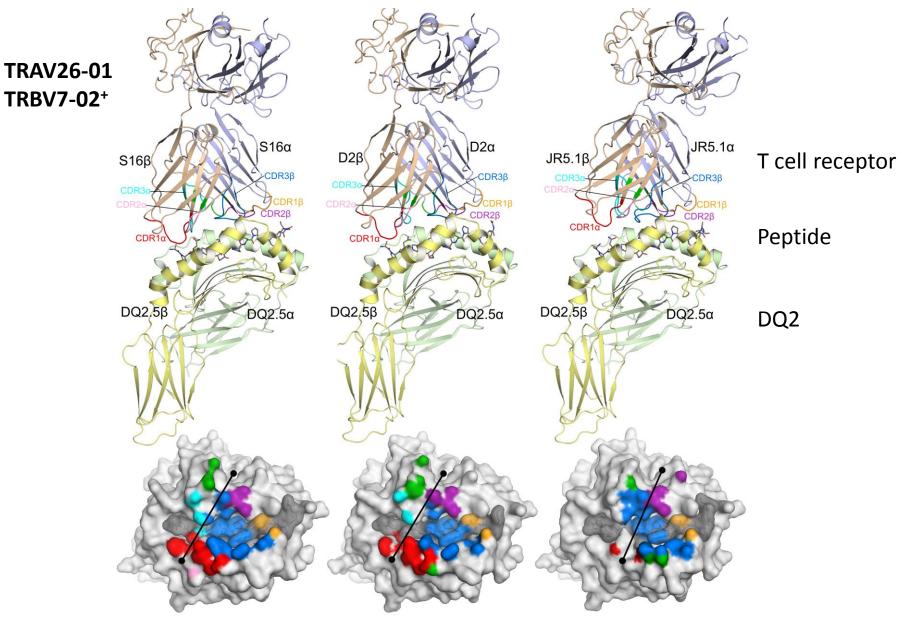
The specificity of tTG is determined by proline, the 2nd most abundant aa in gluten

Predict toxic gluten sequences?

	Gluten	Hordein	Secalin	Avenin	Tcells
	Wheat	Barley	Rye	Oats	
Search					
Algorithm	46	60	33	2	yes

Specificity of tissue transglutaminase explains cereal toxicity in celiac disease.

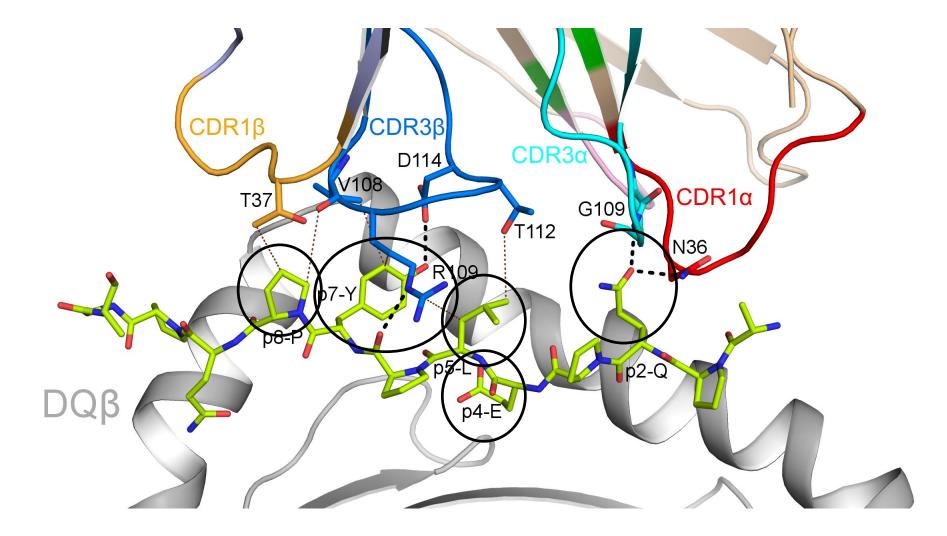
Vader, de Ru, van der Wal, Kooy, Benckhuijsen, Mearin, Drijfhout, van Veelen, and Koning. J. Exp. Med. 195: 643-649 (2002).



Identification of T cell stimulatory peptides in cereals

Gliadin (wheat): QLQPFPQPQLPYPQPQ PFPQPQLPY PQPQLPYPQ

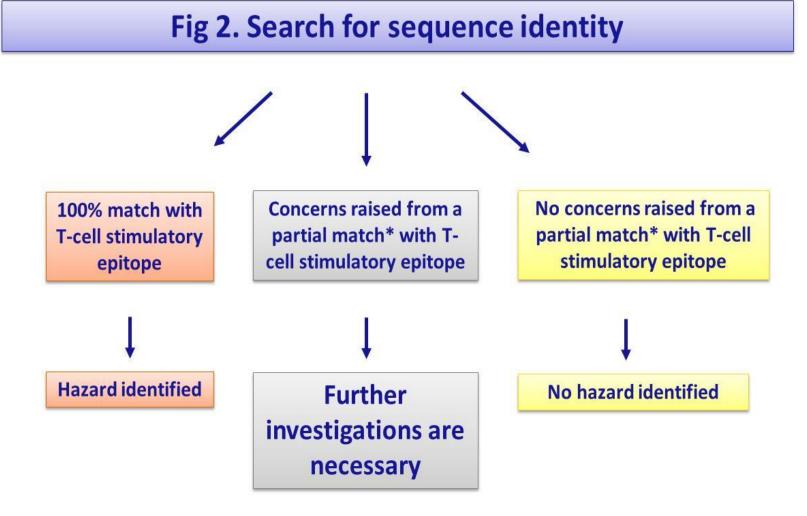
Secalin (rye): PQQPFPQPQQPFPQSQ PFPQPQQPF PQPQQPF


DQ2-glia- α 2 recognition

Conserved β-chain footprint

Petersen et al, NMSB 2014

DQ2-glia-a2 recognition: PQPQLPYPQ


Broughton Immunity 2012; Petersen et al, NMSB 2014; Petersen JI 2015

Bona fide toxicity of gluten for patients with celiac disease

- Well defined
- Mechanism underlying toxicity clear

RA of (novel) proteins: celiac disease

*A partial match with a known T cell-stimulatory peptide raises concern because of the position and nature of the identical amino acids.

Celiac disease — DQ2 T-cell epitopes

DQ2 restricted epitopes

Sollid et al., 2012. Immunogenetics, 64,

Epitope	Motif	Reference	<u>455-460</u>
DQ2.5-glia-α1a	P F P Q P Q L P Y	Arentz-Hansen et al. (2000)	
DQ2.5-glia-α1b	P Y P Q P Q L P Y	Arentz-Hansen et al. (2002)	
DQ2.5-glia-α2	P Q P Q L P Y P Q	Arentz-Hansen et al. (2000)	
DQ2.5-glia-α3		Vader et al. (2002b)	
DQ2.5-glia-y1	ЕГЬАХ	Sjöström et al. (1998)	
DQ2.5-glia-γ2		Qiao et al. (2005), Vader et al. (2002b)	
DQ2.5-glia-γ3	OO F	Arentz-Hansen et al. (2002)	
DQ2.5-glia-γ4a	vy vy r	Arentz-Hansen et al. (2002)	
DQ2.5-glia-γ4b		Qiao et al. (2005)	
DQ2.5-glia-γ4c	F A	Arentz-Hansen et al. (2002)	
DQ2.5-glia-γ4d		Qiao (unpublished)	
DQ2.5-glia-y5	S V	Arentz-Hansen et al. (2002)	
DQ2.5-glia-ω1	o v	Tye-Din et al. (2010)	
DQ2.5-glia-ω2		Tye-Din et al. (2010)	
DQ2.2-glut-L1	EQ	Vader et al. (2002b)	
DQ2.5-glut-L2	- V	Stepniak et al. (2005), Vader et al. (2002b)	
DQ2.5-hor-1		e-Din et al. (2010), Vader et al. (2003)	
DQ2.5-hor-2	Q/E-X1-P-X	A der et al. (2003)	
DQ2.5-sec-1			
DQ2.5-sec-2	P Q P Q Q P F P Q	Vader et al. (2003)	
DQ2.5-ave-1	P Y P E Q Q E P F	Arentz-Hansen et al. (2004), Vader et al. (2003)	
DQ2.5-ave-1b	P Y P E Q Q Q P F	Arentz-Hansen et al. (2004), Vader et al. (2003)	12

Q-X-P-X

- PFPQPQLPY
- PQPQLPYPQ
- PXP in addition to QXPX is associated with the most immunogenic epitopes
- In contrast: PP is never found in T cell epitopes
- Positively charged amino acids in general diminish likelihood of DQ-binding and T cell recognition. Positive charge at p1, p4, p6, p7 and p9 bad for DQ-binding.

Celiac disease — DQ8 T-cell epitopes

Sollid et al., 2012. Immunogenetics, 64,

<u>455-460</u>

DQ8 restricted epitopes

Epitope	Motif	Reference
DQ8-glia-α1	Q G S F Q P S Q Q	van de Wal et al. (1998b)
DQ8-glia-γ1a	Q Q P Q Q P F P Q	Tollefsen et al. (2006)
DQ8-glia-y1b	Q Q P Q Q P Y P Q	Tollefsen et al. (2006)
DQ8-glut-H1	Q G Y Y P T S P Q	van de Wal et al. (1999)

Partial matches without the Q/E-X1-P-X2 to be investigated

Partial matches: Q/E-X1-P-X2 motif is present

PFPQPQLPY and ALPLTQLPA

4 identical, two invisible, one conservative: POTENTIAL HAZARD

PQPQLPYPQ and

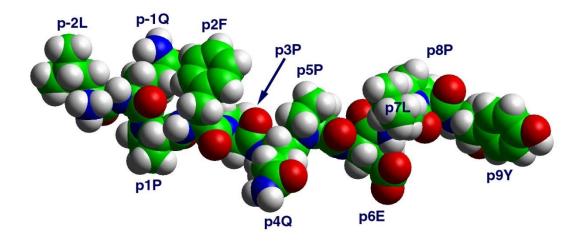
PLTQLPASR

4 identical, one conservative BUT
Y > A, P > S and Q > R prohibit recognition:
NO HAZARD

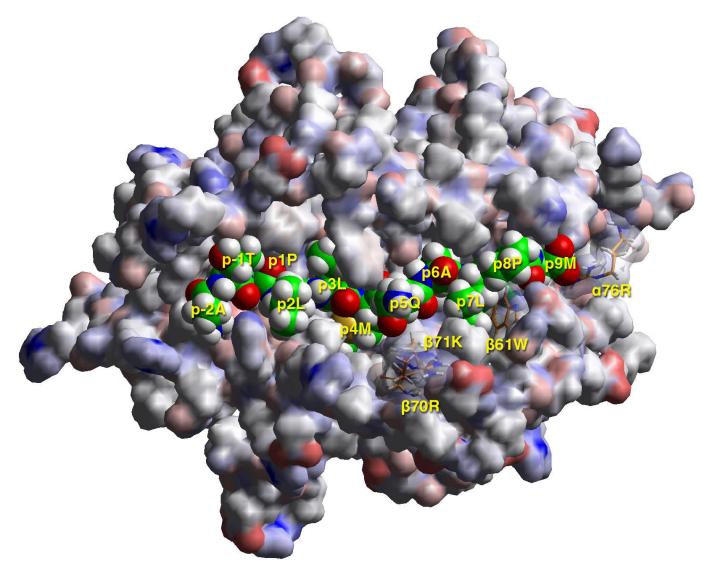
Partial matches: Q/E-X1-P-X2 motif is NOT present

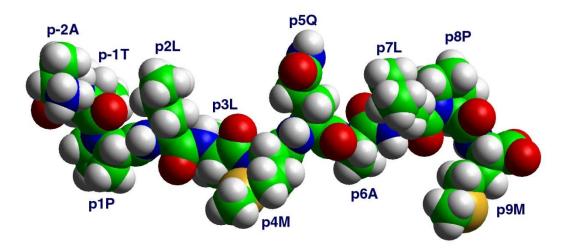
QGSFQPSQQ and EGSIQAGQQ

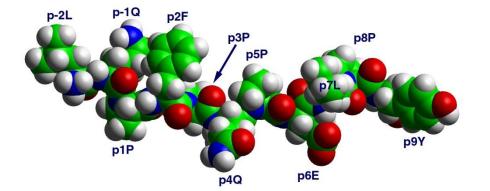
5 identical, one conservative, one enhances binding: POTENTIAL HAZARD

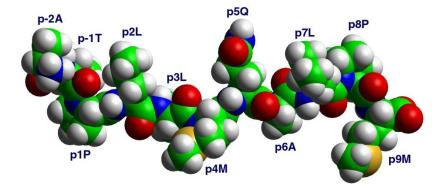

QGSFQPSQQ and QGLFSPSAQ

6 identical BUT Critical T cell receptor contact residues differ: NO HAZARD




Peptide binding and Modelling


PFPQP ELPY PLLMQ ALPM



PLLMQALPM

Molecular mimicry? Cross-reactivity between microbial antigens and gluten epitopes?

Glia-α1PFPQPELPYBacterial peptide 16 matchesBacterial peptide 25 matchesGlia-α2PQPELPYPQBacterial peptide 37 matchesBecterial peptide 45 matches

All have the Q/E-X1-P-X2 motif

Potential antigenicity can be predicted

AND YES

There are bacterial peptides that trigger gluten-specific T cells