Cutaneous and Gastrointestinal route of sensitization in allergic diseases

Simon Hogan, PhD
Division of Allergy and Immunology,
Department of Pediatrics
Cincinnati Children’s Hospital Medical Center
University of Cincinnati College of Medicine
Cincinnati, OH
Allergic Inflammatory Response

Virus, bacteria, fungi, allergens, environmental particulates

Epithelium
Fibroblasts

MΦ
MIP-3α
IL-22
IL-17A
IL-17F
IL-8, Gro-α
TNF-α, IL-6, IL-1β

Neutrophils
IL-17-producing T cells

IL-25/IL-33
Innate helper cells

Cytokines

Type-2 Cytokines

Allergic Disease
Susceptibility/Risk Factors of atopic disease

Environmental factors

Positive
- Allergen exposure
- Infection (respiratory syncytial virus or rhinovirus)
- Antibiotics
- Cigarette exposure
- Obesity
- Chemical exposure (ozone) and Car exhaust

Negative
- Endotoxin exposure
- Living on a farm
- Early pet exposure

Genetic Predisposition
- IgE, STAT6, IL-4, IL-13

Intrauterine factors
- Cigarette smoking
- Antibiotic usage

Other factors

Cell specificity
- Tissue specificity

Allergic disease
Barrier Failure in Allergic Diseases

Atopic Dermatitis

- Transepidermal water loss (TEWL), marker barrier function in AD vs controls
- 4-fold higher lesional skin and 2-fold higher non-lesional skin
- Increased colonization by *Staphylococcus aureus*
- Increased susceptibility to cutaneous viral infections

Food Allergy

- Increased intestinal permeability in cow’s milk allergic patients as compared with healthy controls.
- Positive correlation between severity of clinical symptoms of food allergy and degree of altered intestinal permeability
Gene Linkage Studies: Filaggrin (\textit{FLG})

- Gene linkage Studies
- \textit{Compton et al., Exp Dermatology 2002:11:518-526}
 - Two multigenerational families
 - Ichthyosis vulgaris (IV)

- 1 family (5/6 individuals)
 - Absent granular epidermal layer (AGL)
 - Linkage IV with associated AGL phenotype
 - Epidermal differentiation complex (FLG) Chromosome 1q21
 - EDC- S100A genes, profilaggrin, involucrin and loricrin

- \textit{Palmer et al., 2006 Nature Genetics 38:441-446}
 - Two-independent loss-of-function genetic variants FLG
 - R510X and 2282del4
 - Null mutations cause IV in 15 families
 - Many families IV also had atopic dermatitis and asthma
 - All heterozygote FLG null allele
 - 9% of people of European origin
Fillaggrin and Atopic Dermatitis

- Palmer et al., 2006 Nature Genetics 38:441-446

- **52 Irish pediatric patients**
- Unselected Irish control population
 - R501X
 - 2282Del4 combined allele frequency 0.042
 - Atopic dermatitis cohort 0.330 OR 13.4.
 - 50% AD also had asthma.

- 1008 Scottish school children of unknown disease status (population cohort)
 - Frequency R501X 5.8% 2282 del4 3.8 combined 9.6%

- 604 Scottish school children and adolescents with asthma from BREATHE study
 - Filligrin variants over-represented asthma cohort
 - R501X 9.2% 2282del4 7.5 combined 15.7%
Barrier protein: FLG and Atopic Dermatitis

- Fillaggrin (filament-aggregating protein)

- Terminal differentiation of epidermis

- Keratinocyte intermediate filaments serving as scaffold for the formation of the cornified envelope, therefore providing a

- **Barrier against moisture loss and protection from microbes and allergens**

- Transepidermal water loss (TEWL)
 - 4-fold higher lesional skin
 - 2-fold higher non-lesional skin of AD vs controls

- Increased colonization by *Staphylococcus aureus*

- Increased susceptibility to cutaneous viral infections
Preclinical Evidence FLG and AD

Scharschmidt et al., JACI 2009 124:496-506
- Increased bidirectional paracellular permeability
- Correlated with reduced inflammatory thresholds to both topical irritants and haptens
- Topical administration hapten
 - AD-like dermatosis, ↓ barrier function, ↑ Th2 inflammation IgE
Preclinical Evidence FLG and AD

- Topical application of allergen to Ft/ft mice
- Cutaneous inflammatory infiltrates and
- ↑ cutaneous allergen priming with Development of allergen-specific antibody responses

Antigen transfer through a defective epidermal barrier is a key mechanism underlying IgE sensitization
Barrier protein: FLG and Atopic Dermatitis

Irvine et al., NEJM 2011:365:1315
Barrier Protein: Claudin-1

De Benedetto et al., JACI 2011
127:773-786

Illumina BeadChip array
21,429 Unique genes
43 Tight Junction Genes
8 gap junction genes
41 EDC genes
Barrier Protein: Claudin-1

De Benedetto et al., JACI 2011 127:773-786

Confirmed EDC and FLG
↓ Claudin-1 and claudin-23 mRNA and protein

CLDN1 expression and Total IgE
CLDN1 expression and eosiophil counts

Haplotype-tagging SNP approach
Evidence suggest CLDN1 association with AD
Pre-clinical Evidence Cldn-1

Furuse et al., 2002 J Cell Biol 156:1099-1111

- Cldn-1-deficient mice
- Die 1d of birth wrinkled skin
- Dehydration assay TEWL
- Severe epidermal barrier defect
- Layered organization of keratinocytes normal
Genetic Analyses Barrier Proteins and AD

- **GWAS Study- Esparza-Gordillo et al., Nature Genetics 41:596-601 2009**
 - Confirmed EDC 1q21
 - Chromosome 11q13
 - *C11orf30 chromosome 11 open reading frame 30*
 - *LRRC32 leucine rich*

- **GWAS Study- Sun et al., Nature Genetics 43:690-696 2011**
 - 1,012 chinese Han AD and 1,362 controls
 - 5q22.1 *TMEM232- transmembrane protein 232; SLC25A46- solute carrier 25 mitochondrial carrier protein*

- **Paternorster et al., Nature Genetics 2012 44:187-193**
 - Genome-wide association meta-analyses
 - 5,606 AD and 20,565 controls – 16 population based cohorts
 - Replicated FLG locus
 - OVOL1 – regulation of the development and differentiation of epithelial cells
 - Ovol1 KO mice: keratinocyte hyperproliferation and hair shaft abnormalities
 - Regulates EDC protein Lorcrin (LOR) expression
Regulation of intestinal epithelial barrier function

Claudin-3 E-Cadherin DAPI
Gastrointestinal Tract – Oral sensitization

- **Food Allergy**
 - Increased Intestinal permeability in infants with food allergy compared to healthy young children
 - Food allergic patients who had been on an allergen-free diet for at least six months.
 - **New-onset food allergies following liver and heart transplantation**
 - **Immunosuppressant tacrolimus (FK506)**
 - **Increased intestinal permeability and elevated levels of food antigen-specific IgE**
 - **Development of food allergies in patients where the donor had no history of food allergy**

- **Food Allergy Severity**
 - Intestinal barrier dysfunction contributes to the severity of food allergen-induced clinical symptoms. The level of intestinal barrier dysfunction positively correlated with the severity of clinical symptoms.
Alterations in intestinal barrier function are linked to a variety of autoimmune and inflammatory conditions

- Defects in barrier function are believed to be an important etiologic factor for disease onset:
 - **Inflammatory Bowel Disease**
 - Increased intestinal permeability in patients and healthy 1st-degree relatives
 - Increased permeability is predictive of Crohn’s Disease severity, clinical relapse and responsiveness to therapy
 - **Celiac Disease**
 - Patients with celiac disease have enhanced intestinal permeability
 - Altered intestinal permeability persists in asymptomatic patients treated with gluten-free diet.
 - Healthy first degree relatives of celiac patients have increased intestinal permeability
 - Precedes disease onset in Irish setter dogs
 - **Type I Diabetes**
 - Increased intestinal permeability in patients at disease onset
 - BB rats: increased zonulin leads to increased intestinal permeability prior to the onset of insulitis.
Immune regulation of TJ’s and intestinal epithelial barrier function

Turner, 2009 Nat Rev Immunol. 9:3-20
Groschwitz and Hogan, 2009 JACI 124(1):3-20
iIL-9 Tg Mice and altered Intestinal barrier function

Intestinal Permeability

Intestinal epithelial barrier dysfunction in iIL-9 Tg mice

Forbes et al., JEM 2008 205:897
Intestinal expression of IL-9 and increased intestinal permeability predisposes to food-induced anaphylaxis

Naïve iFABPp-IL-9Tg mice
OVA-induced intestinal anaphylaxis

Mice with altered intestinal epithelial barrier dysfunction are predisposed to intestinal anaphylaxis

Forbes et al., JEM 2008 205:897
Intestinal expression of IL-9 and increased intestinal permeability predisposes to oral antigen sensitization

(a) i.g. OVA challenge (50mg/250μl)

![Graph showing OD450: OVA-Specific IgG1](image)

- BALB/c WT
- iFABPp IL-9 Tg

![Graph showing IL-4 (pg/ml)/mg jejunum protein](image)

- p<0.05
- p<0.01

![Graph showing % IL-4+ CD4+ cells](image)

- p<0.05

Forbes et al., JEM 2008 205:897
Blockade of altered intestinal epithelial permeability protects iIL-9Tg mice from oral antigen-sensitization and predisposition to food-induced anaphylaxis

Cromolyn
blocks intestinal epithelial barrier function in iIL-9TG mice

Repeated Oral gavage OVA.
Reduced Antigen-specific IgG1 and IgE
IL-4 levels

Repeated oral gavage OVA
No anaphylaxis

Forbes et al., JEM 2008 205:897
Goblet-cell-associated antigen passages
McDole et al., Nature 2012

- Examined the *in vivo* antigen acquisition behaviour of intestinal LP-DCs
- Two-photon microscopy
- Trans epithelial dextran columns
- Throughout small intestine
- Co-localized with Muc2+ cells

- Size-sensitive: 0.2 – 1uM no GAP
- 10-70kDa Dextran
Goblet-cell-associated antigen passages
McDole et al., Nature 2012

- Luminal Ag – Ovalbumin (OVA)
- CD11c DC : OT-I T-cells
Goblet-cell-associated antigen passages
McDole et al., Nature 2012

- Cholinergic Agonist- Goblet secretion
- Goblet cell secretion
- GAP formation
- Luminal Ag delivery
- Villin^{Cre}Math1^{fl/fl} mice
- Mouse atonal homologue 1 (Math1)
- Required intestinal secretory cell lineage GC

Involvement of goblet-cell-associated antigen passages in food allergen sensitization remains to be determined

Involvement of these pathways in cutaneous and respiratory antigen sampling unknown
Summary

Genetics Hit 1
IL-4
IL-13
TSLP
IgE

Environment
chemical
Infection
chemical
Car exhaust
Cigarette exposure
Infection
Allergen exposure
Food particulates
microbiota

+ Allergen

AD
Asthma
Food allergy

Atopy
Summary

Genetics Hit 1 Genetic Hit 2

IL-4 IL-13 TSLP IgE

FLG Cldn1

?? ??

AD Asthma Food allergy

+ allergen

Atopy Tissue specificity
Acknowledgments

Hogan Lab
Richard Ahrens
Heather Osterfeld
David Wu
Amanda Beichler
Katherine Groschwitz

CCHMC Collaborators
Fred Finkelman
Rick Strait
Yuishi Wang
Marc Rothenberg
Pablo Abonia

Klaus Matthaei- JCSMR, Australia
Paul Foster- University of Newcastle, Australia
Gunnar Piejler, Sweden
Michael Gurish Harvard University, USA
Jean-Christophe Renauld – Brusselles

Supported by:
Food Allergy and Anaphylaxis Network
American Heart Association
Crohns Colitis Foundation of America
CCHMC Digestive Health Center
NIH