Juvenile Animal Studies and Pediatric Drug Development

Retrospective Review: use in regulatory decisions and labeling

Melissa S Tassinari PhD DABT
Karen L Davis-Bruno PhD
Kimberly Benson PhD
Ikram Elayan PhD
Parvaneh Espandidiari PhD
CDER, US Food and Drug Administration

Views expressed in this presentation are those of the authors and do not necessarily reflect official positions or policies of the FDA
Objectives
Sources of data
Some metrics
Case examples
 - Informing and in the label
 - Informing but not in the label
 - Requested for a specific concern
 - Screening
What have we learned so far?
Retrospective Review

- **Objective**
 - To better understand the value that the juvenile animal study contributes to regulatory decision making for pediatric drug development
 - When have studies been included
 - What, if any, impact did they have on decisions made
 - Was the data incorporated into the label

 - To evaluate key parameters and/or study designs that should be considered when a juvenile animal study is conducted
 - Refine recommendations for testing strategies

Today’s presentation
Retrospective Review: What did we look at?

- Sources
 - Approvals and Supplements (NDA and BLA) 1998 - 2009
 - Written Requests 1998 - 2010
 - Labeled products (PREA and BPCA) 1998 - 2010
 - Selected Division files
 - PharmaPendium™ listings of juvenile animal studies 1976 – 2009

- Most current label for each product was reviewed for juvenile animal data
- Identified products for which juvenile animal testing had been done but data had not been included in the label
- Identified Written Requests that had included juvenile animal studies
- Reviewed a subset of products to assess impact of the juvenile animal study on the regulatory decision.
Relevant Parameters

- Pediatric Regulations
 - 1998 Pediatric Rule
 - 2002/3 Best Pharmaceuticals for Children Act (BPCA) & Pediatric Research Equity Act (PREA)
 - 2007 FDAAA (renewed BPCA & PREA)
- 2006 FDA Guidance – Nonclinical Safety Evaluation of Pediatric Drug Products
- Labels - Where is the juvenile animal data found?
 - Older labels in section, Pediatric Use
 - PLR* formatted sections 8.4 and/or 13.2 and sometimes 5

*Physician Labeling Rule
Physician Labeling Rule: Contents and Full Prescribing Information

Boxed Warning
1 Indications & Usage
2 Dosage & Administration
3 Dosage Forms & Strengths
4 Contraindications
5 Warnings & Precautions
6 Adverse Reactions
7 Drug Interactions
8 Use in Specific Populations*
 8.1 Pregnancy
 8.4 Pediatric Use
9 Drug Abuse & Dependence*
10 Overdosage
11 Description
12 Clinical Pharmacology*
 12.4 Pharmacokinetics in Special Populations
13 Nonclinical Toxicology*
 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
 13.2 Animal Toxicology and Pharmacology
14 Clinical Studies
15 References
16 How Supplied/Storage & Handling
17 Patient Counseling Information
 17.11 FDA-Approved Medication Guide

* Indicates sections with specified numbering of subsections
The Data: Review of Labels*

- 400 labels with pediatric information
 - 25 were labeled under PREA
 - 169 exclusivity granted under BPCA [Written Request]
 - 20 were BLAs
- ~10% had juvenile animal data in the label
 - Some data from chronic toxicology studies initiated with immature animals

* 1998- 2010
The Data: Juvenile Animal Studies

- Queried data files for drugs with juvenile animal studies
- 39 drugs were selected for further review
 - 35 NDAs / 4 BLAs
 - Represented multiple disease areas
 - 29/39 had juvenile animal data in the label

Value
- Increased sensitivity
 - Some helped to set age limits for use
- Unique toxicity
- Replicated toxicities already characterized
 - Least likely to show up in the label
Species Use

<table>
<thead>
<tr>
<th>Species</th>
<th>Total</th>
<th>In label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Monkey</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mouse</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rat & dog</td>
<td>10</td>
<td>8*</td>
</tr>
<tr>
<td>Rat & monkey</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rat & mouse</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*only 1 species included
Distribution by year

<table>
<thead>
<tr>
<th>Year</th>
<th>1 species</th>
<th>2 species</th>
<th>Other*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1998</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1999-2002</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2003-2007 (Sept)</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2007-2010</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>

* Data from immature animals vs a juvenile study
The Written Request

- Written Request (WR) – formal agreement for pediatric studies under BPCA
- FDAAA 2007 allows for juvenile animal studies as needed to support pediatric clinical trials
- Reviewed 14 WR with juvenile animal study requests
The Written Request – a closer look

<table>
<thead>
<tr>
<th>Yr. issued</th>
<th>1 species</th>
<th>2 species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2003</td>
<td>3*</td>
<td>2</td>
</tr>
<tr>
<td>2003-2009</td>
<td>7</td>
<td>2**</td>
</tr>
</tbody>
</table>

*Single species requested but sponsor performed studies in 2 species

** sponsor initiated studies in one case

Rationale for requests

- 8 - ask for additional safety for labeling *
- 4 - are for specific concerns (toxicities)
- 2 - are for a safety assessment in the pediatric population
- 1 - to support pediatric clinical trials
- 1 - no reason given

* most consistently requested endpoints were for growth, neurologic/neurobehavioral and reproductive.
The Written Request – a closer look

<table>
<thead>
<tr>
<th>Species</th>
<th>Total</th>
<th>Pre-2003</th>
<th>2003-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat only</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Dog only</td>
<td>1</td>
<td>1*</td>
<td>-</td>
</tr>
<tr>
<td>‘Non-rodent’ only</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Not specified only</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Rat and dog</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rat and monkey</td>
<td>1</td>
<td></td>
<td>1**</td>
</tr>
<tr>
<td>Rat and non-rodent</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

*Single species requested but sponsor performed studies in 2 species
** sponsor initiated studies
CASE STUDIES

How were the data from the juvenile animal studies applied?
Case study – in the label

Darunivir (treatment of HIV infection)

- Species – rat
- Single and multiple dose studies at different ages
 - Convulsions and mortality when given to pups <23 days old
 - Exposure in plasma, liver and brain >> adult rats
 - Toxicity profile of animals > 23 days similar to adult rats.
 - Attributed to ontogeny of CYP450 system and immaturity of the blood brain barrier
- Section 8.4 – do not administer to patients <3 yrs because of toxicity and mortality in juvenile rats
- Section 13.2 – description of study findings

Value – increased sensitivity, set age limitation for dosing
Case study – in the label

Vigabatrin (Adjunctive therapy for refractory complex partial seizures in adults and infantile spasms in pediatric patients)

- Species - rat
- Multiple dose studies starting on PND 4
 - Standard toxicological endpoints with added assessments for neurotoxicity and retinal toxicity based on previous adult findings
 - Mortality and neurobehavioral deficits, convulsions, brain lesion that was unique, retinal and brain lesions at exposures less than those used in adult rats and less than projected clinical doses
- Pediatric Section
 - Notes abnormal MRI signal changes in infants treated for infantile spasms
 - Description of juvenile rat studies

Value - increased sensitivity, possible clinical correlate
Case study – Informing regulatory decisions during development

Drug A (NMDA receptor antagonist)

- Species – rat
- Neuronal lesions in adult animals drove the design of the juvenile studies
- Dosing PND 14 – 67; recovery to PND 91
- Similar sensitivity and toxicities to adult rats (vacuolation and necrosis of brain)
- Drove the setting of the clinical dose in pediatric trials (1/10th the juvenile rat plasma concentration at the NOAEL)
- Findings described in consent form

Value – clinically relevant toxicity
Case study – Informing regulatory decisions during development

Drug B (treatment of 1° and 2° hyperparathyroidism)

- Species – rat and dog
- Rat: age at dosing PND 21 – 49; recovery to PND 67
 - No unexpected toxicity; adverse effects attributed to pharmacology
- Dog: age at dosing PND 70 – 98 recovery to PND 126
 - Cardiac toxicity
 - Findings drove request for an additional dog study for safety
 - Pediatric studies on hold until completed
- Dog: 6 month study; age at dosing PND 70 with 3 month recovery
 higher doses used
 - No cardiac toxicity; other findings consistent with excess pharmacology
 - Pediatric studies now underway

Value – unexpected finding in a study with a ‘general toxicity’ design had potential clinical consequence; further, more directed study supported resumption of pediatric program
Case study – Informing regulatory decisions but not in label

Drug C – (IL-1β blocker)

- Species – mouse using antibody homolog
- Dosing weekly SC PND 7-70; Assessed for growth, reflex development, immune function, learning and memory, reproductive competency
- No differences noted from vehicle treated mice.
- Plasma exposure at the NOAEL supported weight-based dosing information in children ≥ 4 yrs

Value – use of surrogate in animal model to support pediatric studies
Case study – No added information

Drug D – (treatment of thrombocytopenia)

- Species - rat
- Dosing PND 4- 31; standard 28 day general toxicity study design, no juvenile specific parameters
- Findings showed no unique toxicities or sensitivity

Value- no impact on label information
What Have We Learned

- More studies performed than are reflected in the labels
- Most studies requested are for cause
 - Some requests for screening studies – hard to distinguish from unsolicited studies
- Post-FDAAA if a study is done relevant data will be placed in the label
 - WR template* now asks for review of nonclinical toxicology to assess need
- Further analysis of the programs will give insight on when and where these studies have been impactful and when and where these studies should be considered
 - When does asking for 2 species make sense?
 - Does any one age group trigger studies?

Conclusion

- What is the ‘value’ of the juvenile animal study?
 - Safety assessment
 - To aid in characterizing the risks
 - Detect unique toxicity, increased sensitivity

- The advice in the guidance is sound

- Expect to see more studies as PIP requirements are completed
 - Important to inform Division of nonclinical as well as clinical pediatric plans
Next steps

- To evaluate key parameters and/or study designs that should be considered when a juvenile animal study is conducted
 - Refine recommendations for testing strategies