Qualitative and Quantitative Approaches in the Threshold of Genotoxic Carcinogens

Shoji Fukushima¹, Min Gi², Anna Kakehashi², Hideki Wanibuchi²

¹ Japan Bioassay Research Center, Japan Industrial Safety & Health Association, Hadano, Kanagawa 257-0015, Japan
² Department of Pathology, Osaka City University Graduate School of Medicine, Abeno, Osaka 545-8585, Japan
Present Concept of Chemical Carcinogenicity

Carcinogenic response

Non-genotoxic carcinogen

NOEL

Genotoxic carcinogen

No threshold (LNT)
Low-dose Carcinogenicity Study of 2-Acetylaminofluorene (Megamouse Experiment)

- Animal: 24,192 female BALB/c mouse, 3-4 weeks of age
- Doses of 2-acetylaminofluorene (2-AAF) in diet: 0, 30, 35, 45, 60, 75, 100, 150 ppm
- Time of sacrifice: 9 ~ 33 months

Do not contradict “No Threshold” theory

Dose model for bladder neoplasm

Dose model for liver neoplasm

(Famer J.H., et al., J Environ Pathol Toxicol, 1979, 3: 55-68)
Reconsideration of Linear Non-threshold Theory

Low-dose carcinogenicity curve of genotoxic carcinogens: Extrapolation from high to low doses

It has been argued that non-threshold theory is challenged based on the view that organism possess biological responses that can ameliorate genotoxic activities.
Extrapolation of Genotoxic Carcinogenicity Study Results to Human

- Qualitative analysis only to classify into genotoxicity or non-genotoxicity is inadequate for carcinogenic risk assessment
- Qualitative and quantitative assessments are desirable in analysis for carcinogenicity, particularly at low doses
- Weight of evidence: *in vivo* data are more valuable than *in vitro* results in the quantitative analysis
- Point of departure (PoD) can be used for quantitative analysis of genotoxicity and carcinogenicity dose-response data
- PoD in markers of *in vivo* carcinogenic mechanism may contribute to resolution of putative non-threshold theory of genotoxic carcinogens
Chemical Carcinogenesis Mechanisms

Carcinogen

- Metabolic activation: ultimate carcinogen
- DNA adduct formation
- Oxidative stress
- DNA repair error
- DNA repair
- Inactivation

Non-DNA

- Cancer-irrelative mutations
- Apoptosis

Mutation

- A→C mutation

Initiation

- GST-P positive foci
- GST-P positive cell (possibly mutated cell)

Promotion

- Cancer
- Premalignancy: cell proliferation
- Apoptosis

Cancer:

- Malignancy
- Irreversible change
- Preneoplasia: cell proliferation
- Apoptosis

Inactivation

- Non-DNA
MelQx

One of heterocyclic amines
- Exists in well-cooked fish and meat
- Genotoxicity: Ames test, positive
- Chromosome aberration test, positive
- Structural aberration: positive
- Hepatocarcinogen
- Human exposure level: 0.2-2.6 µg/day
- IARC category: 2B
 (probably carcinogenic to humans)

Hepatocarcinogenicity in rats

Liver tumor incidence (%)

<table>
<thead>
<tr>
<th>MelQx dose (ppm in diet)</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P<0.01

(Wakabayashi K., et al., Carcinogenesis, 1996, 17: 1029-1034)
Rat Hepatocarcinogenicity of MelQx at Low Doses

Animals: 1,180 male F344 rats, 21-day-old

MelQx-DNA adduct

* p<0.05

4 wks

MeIQx dose (ppm in diet)

Adduct /10^7 ntd

8-OHdG /10^5 dG

* p<0.01

8-OHdG

NOEL, ND
BMDL10, 2e-05
BMDL1SD, 4.06

0.01 0.1 1 10 100

0.01 0.1 1 10 100

0.001 0.01 0.1 1 10 100

NOEL, 0.1
BMDL, 0.07

Number (/cm²)

GST-P positive foci

* p<0.01

32 wks

16 wks

0 0.001 0.01 0.1 1 10 100

0 0.001 0.01 0.1 1 10 100

(Fukushima S., et al., JJCR, 2002, 93: 1076-1082)
Incidence of LacI Gene Mutations and Development of GST-P Positive Foci in the Liver of Big Blue Rats Treated with MeIQx for 16 Weeks

Incidence (No./10^6)

- **LacI gene mutations**
 - NOEL, 1
 - BMDL10, 0.08
 - BMDL, 6.98

- *p<0.01

Number (No./cm^2)

- **GST-P positive foci**
 - NOEL, 10
 - BMDL, 6.72

* *p<0.01

LacI gene: 30~40 copies on chromosome 4 in the F344 rat

Initiation Activity of MeIQx at Low Doses in the Rat Liver

Animals: 850 male F344 rats, 21-day-old

Phenobarbital, 500 ppm in diet

MeIQx; 0, 0.001, 0.01, 0.1, 1, 10, 100 ppm in diet

Number (No./cm²)

GST-P positive foci

* p<0.01

NOEL, 1
BMDL, 10.97

Rat Heatocarcinogenicity of MeIQx in Long-term Carcinogenicity Test

Liver tumors (54 wks)

<table>
<thead>
<tr>
<th>MeIQx (ppm)</th>
<th>No. of rats</th>
<th>Incidence (%)</th>
<th>Hepatocellular adenoma</th>
<th>Hepatocellular carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>5 (17) *</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>29</td>
<td>13 (45) *</td>
<td>13 (45) *</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>19</td>
<td>1 (6)</td>
<td>15 (94) *</td>
<td></td>
</tr>
</tbody>
</table>

Liver tumors (104 wks)

<table>
<thead>
<tr>
<th>MeIQx (ppm)</th>
<th>No. of rats</th>
<th>Incidence (%)</th>
<th>Hepatocellular adenoma</th>
<th>Hepatocellular carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>51</td>
<td>14 (27) *</td>
<td>6 (12) *</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.01 v.s. 0 ppm

GST-P positive foci (104 wks)

Adenoma: NOEL, 1
BMDL, 22.54

Carcinoma: NOEL, 1
BMDL, 44.54

(Kushida H., et al., Cancer letters, 1994, 83: 31-35)

Markers of MelQx Rat Hepatocarcinogenesis and the Comparison with Point of Departure (PoD)

<table>
<thead>
<tr>
<th></th>
<th>DNA adduct</th>
<th>Mutation</th>
<th>GST-P⁺ Foci</th>
<th>Adenoma</th>
<th>Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEL</td>
<td>ND</td>
<td>1</td>
<td>10</td>
<td>< 100</td>
<td>100</td>
</tr>
<tr>
<td>BMDL10</td>
<td>2e-05</td>
<td>0.08</td>
<td>0.14</td>
<td>11.4 (tumors)</td>
<td></td>
</tr>
<tr>
<td>BMDL</td>
<td>4.06</td>
<td>6.98</td>
<td>15.12</td>
<td>60.25</td>
<td>72.69</td>
</tr>
</tbody>
</table>

ND, not detected

BMDL ranking: DNA adduct < Mutation < Preneoplasia < Tumor
Preneoplastic Lesions or Tumors in MelQx Rat Hepatocarcinogenesis and the Comparison with PoD

<table>
<thead>
<tr>
<th>GST-P⁺ Foci</th>
<th>Adenoma</th>
<th>Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 wks</td>
<td>54 wks</td>
<td>104 wks</td>
</tr>
<tr>
<td>NOEL</td>
<td>< 100</td>
<td>1</td>
</tr>
<tr>
<td>BMDL</td>
<td>44.52</td>
<td>60.25</td>
</tr>
</tbody>
</table>

BMDL ranking: Adenoma < Carcinoma (54 weeks, 104 wks)
Adenoma < Preneoplasia & Carcinoma (104 wks)
Risk of Liver Cancer: Reaction Curves for the Carcinogenicity Markers Dependent on the Dose of MeIQx

- DNA adduct < Mutation < Preneoplasia < Tumor
- Existence of a carcinogenic threshold
MelIQx DNA Adduct Levels and Number of GST-P Positive Foci in the Liver of Rats under Damaged Liver Condition

MelIQx DNA adduct level (x10^-7)

- TAA+MelIQx: NOEL, ND
 - BMDL, 1.46
- MelIQx: NOEL, ND
 - BMDL, 3.02

MelIQx-DNA adduct level vs MelIQx dose (ppm)

- ** P < 0.01 vs 0.1 ppm

GST-P positive foci

- TAA+MelIQx: NOEL, 1
 - BMDL, 9.68
- MelIQx: NOEL, 16
 - BMDL, 32.45

No. of GST-P positive foci vs MelIQx dose (ppm)

- ** P < 0.1 vs MelIQx
- a, bP < 0.01 vs 0 ppm

Male 280 F344 rats, 21-day-old

PoDs of DNA Adduct and GST-P Positive Foci in MeIQx Rat Hepatocarcinogenesis under Damaged Liver Condition

<table>
<thead>
<tr>
<th>DNA adduct</th>
<th>GST-P+ Foci</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA-MeIQx</td>
<td>1.46</td>
</tr>
<tr>
<td>MeIQx</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>9.68</td>
</tr>
<tr>
<td></td>
<td>32.45</td>
</tr>
</tbody>
</table>

BMDL values: TAA→MeIQx < MeIQx
BMDL ranking: DNA adduct < Preneoplasia
Food-derived heterocyclic amine

Mutagenicity: positive

Genotoxicity (Chromosome aberration test):

Structural aberration: positive

Carcinogenicity in male rats: liver, colon, etc.

(300 ppm in diet, 2-year carcinogenicity study)

IARC category: 2A

2- amino-3-methylimidazo[4,5-f]quinoline
Induction of DNA Adduct and GST-P Positive Foci in the Livers of Rats Administered IQ for 16 weeks

<table>
<thead>
<tr>
<th>IQ (ppm)</th>
<th>No. of rats</th>
<th>GST-P positive foci (No./cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>240</td>
<td>0.15 ± 0.31</td>
</tr>
<tr>
<td>0.001</td>
<td>240</td>
<td>0.16 ± 0.31</td>
</tr>
<tr>
<td>0.01</td>
<td>240</td>
<td>0.26 ± 1.30</td>
</tr>
<tr>
<td>0.1</td>
<td>240</td>
<td>0.15 ± 0.35</td>
</tr>
<tr>
<td>1</td>
<td>240</td>
<td>0.14 ± 0.33</td>
</tr>
<tr>
<td>10</td>
<td>240</td>
<td>0.74 ± 0.88 *</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
<td>88.03 ± 50.41 *</td>
</tr>
</tbody>
</table>

* p<0.01 v.s. 0 ppm

NOEL, 1
BMDL, 61.96

IQ-DNA adduct

0, 0.001 ppm: under detection limit (/5x10^10 ntd)

NOEL, ND
BMDL, 0.09

(Wei M., et al., Cancer Sci., 2010, 102: 88-94)
Relationship between Markers in IQ Carcinogenesis of Rat Livers and PoD

<table>
<thead>
<tr>
<th></th>
<th>DNA adduct</th>
<th>Mutation</th>
<th>GST-P⁺ Foci</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEL</td>
<td>ND</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BMDL</td>
<td>0.09</td>
<td>1.22</td>
<td>61.96</td>
</tr>
</tbody>
</table>

BMDL ranking: DNA adduct < Mutation < GST-P⁺ Foci
Reaction Curves for the Carcinogenicity Markers Dependent on the Dose of IQ

Control level

Response

IQ-DNA adduct

IQ doses

Gene mutation

GST-P positive foci

Liver cancer

DNA adduct < Mutation < Preneoplasia < Tumor

Existence of a carcinogenic threshold
Conclusions

✓ In qualitative analysis, Mode of Action in genotoxic carcinogens is an important tool for the analysis of low dose carcinogenicity.

✓ In quantitative analysis, PoD is a useful tool for the determination of exposure level in each marker of carcinogenesis. BMD may be an appropriate method.

✓ In MeIQx or IQ carcinogenicity, values of PoD were different and increased in order of DNA adduct, mutation, GST-P positive foci and tumor.

✓ These data will contribute to understand whether genotoxic carcinogenic threshold exists or not.
Collaborators

Hirose, Masao (Div. of Pathology, National Institute of Health Sciences)

Konishi, Yoichi (Dept. of Oncological Pathology, Cancer center, Nara Medical University)

Nakae, Dai (Dept. of Pathology, Sasaki Institute, Sasaki Foundation)

Otani, Shuzo (Dept. of Biochemistry, Osaka City University Med. Sch.)

Shirai, Tomoyuki (Dept. of Pathology, Nagoya City University Med. Sch.)

Takahashi, Michihito (Div. of Pathology, National Institute of Health Sciences)

Tatematsu, Masae (Div. of Oncological Pathology, Aichi Cancer Center Research Institute)

Tsuda, Hiroyuki (Experimental Pathology and Chemotherapy Div., National Cancer Center Research Institute)

Wakabayashi, Keiji (Cancer Prevention Research, National Cancer Center Research Institute)