Comparison of three cytokine release assays (CRA) for hazard identification of cytokine release syndrome potential of monoclonal antibody (mAb) therapeutics

Madeline Fort

HESI ITC Cytokine Release Assay Workshop; October 22, 2013
Cytokines are involved in many different immune responses and can be observed in patients given mAb therapeutics.

From Gribble et al., 2007. Expert Opin. Drug Metab. Toxicol. 3: 209-234
There are several known acute immune responses, but this discussion is focused on Cytokine Release Syndrome

- **Serum sickness**: delayed hypersensitivity reaction (~4-10 days) consisting of immune complex generation and vascular damage

- **Tumor lysis syndrome**: Rapid breakdown of lymphoma/leukemia cells results in biochemical abnormalities that can cause kidney damage and acute renal failure.

- **Allergic response (anaphylactic and anaphylactoid)**: hypersensitivity reaction consisting of IgE-dependent or independent mast cell degranulation.

- **Vascular Leak Syndrome**: increased vascular permeability resulting in decreases vascular resistance and interstitial edema in response to IL-2 treatment.

- **Cytokine Release Syndrome (CRS)**: Rapid, uncontrolled hypercytokinaemia that results in a range of clinical effects from pyrexia and fatigue to multiple organ failure
What makes CRS unique among acute infusion reactions?

- CRS can be associated with therapeutics whose mechanism of action involves targeted activation of immune cells
 - Can be associated with mAb which target receptors expressed on immune cells
 - Elevation of both pro-inflammatory (e.g. TNF-α) and anti-inflammatory (e.g. IL-10) cytokines.
 - Demonstrates dose dependency
 - Can be associated with tumor burden, target expression level or target cell abundance
 - Does not involve mast cell degranulation
Lessons learned from mAb therapeutics that cause CRS in the clinic: OKT3, alemtuzumab, and TGN1412

- Identification of potential CRS hazard is crucial prior to First-in-Human dosing
 - Onset of clinical symptoms: typically within 90 minutes of initiating treatment on first (and possibly subsequent) dose(s)
 - Prophylactic treatment with corticosteroids is more effective than treatment after onset of symptoms (at least for OKT3)

- Cytokine release due to exposure to a mAb involves a specific cell-cell interaction that should be amenable to in vitro detection prior to dosing patient

- Both Fab and Fc functions can be important for a mAb to induce CRS: screening assays need to probe both Fab and Fc functions
 - Data from anti-CD3 agonist mAb (OKT3 and visilizumab literature)

- Some cytokines of concern: TNF-α, IFN-γ, IL-6, IL-2
Streamlining CRS-prediction: Possible scenarios

Unified Approach
- All appropriate mAbs run through 1 or 2 assays
- Allows for consistency in assessments across programs
- Can build up experience with one or more assays and confirm/deny predictability
- Allows regulatory agencies to gain confidence in our approach
- Difficult to build one assay that can detect all mechanisms of CRS potential

Specialized Approach
- Create assays specific for the mechanism of a particular therapeutic mAb
- Allows for confidence that mAb mechanism of action is being directly assessed
- Requires extra time and resources to qualify new assays
- Will take longer to build up experience with each particular assay
- Must educate regulatory agencies on each assay
Expectations for a human cytokine release assay (CRA) for CRS prediction

- Must be relatively high throughput and detect cytokines previously observed with CRS-associated mAb therapeutics
 - TGN1412
 - OKT3
 - Alemtuzumab (Campath®-1H)

- Be able to detect cytokines in response mAb therapeutics w/ a weak or rare association with CRS in patients?
 - Trastuzumab (Herceptin®): known to cause mild-moderate first infusion reactions w/ pyrexia and fatigue. Not associated with clinically significant CRS.
 - Rituximab (Rituxan®): typically mild-moderate first infusion rxns; rare serious CRS have been documented; measurable TNF-α and IL-6 in serum of patients w/ high tumor burden.

- Must not give false positive results: mAb therapeutics not associated w/ CRS should be negative in the assay
 - Bevacizumab (Avastin®)
 - Infliximab (Remicade®)
 - Anti-streptavidin: in-house control human IgG2
Human Cytokine Release Assays: comparison for detection of clinically significant CRS

<table>
<thead>
<tr>
<th>Assay</th>
<th>Positive mAb</th>
<th>Key Citations</th>
<th>Tested in-house</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Blood Assays: soluble mAb/protein</td>
<td>OKT3, alemtuzumab; CD28 superagonists;</td>
<td>Walker et al., 2011; Wolf et al., 2012.</td>
<td>No</td>
</tr>
<tr>
<td>protein A beads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Phase: dry coating of mAb to wells</td>
<td>TGN1412, OKT3, alemtuzumab, trastuzumab, rituximab</td>
<td>Stebbings et al. 2007; Findlay et al. 2010.</td>
<td>YES</td>
</tr>
<tr>
<td>Solution Phase: high density PBMC pre-culture</td>
<td>TGN1412</td>
<td>Römer et al. 2011.</td>
<td>YES</td>
</tr>
<tr>
<td>Co-culture system with HUVEC</td>
<td>TGN1412, OKT3, alemtuzumab</td>
<td>Findlay et al. 2011; Dhir et al., 2012.</td>
<td>YES</td>
</tr>
</tbody>
</table>
Solid Phase: dry coating of mAb to wells

- Antibody adherence to tissue culture plate:
 - Add small volume antibody solution to each well.
 - Plates are left overnight in a class II laminar flow cabinet with lids removed to allow the solution to slowly evaporate.
 - After overnight drying, wash all wells twice to remove salt crystals and any unbound antibody.
- Addition of human PBMC (125,000 cells/well): 16-24 hr incubation
- Remove cell supernatants to assay for cytokine production:
 - IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, IL-12p70 using Luminex platform: Millipore Milliplex Human Cytokines (9 analyte panel)
Solid Phase CRA: cytokine production from mAb therapeutics with strong and weak CRS association

- Reproduced published results: alemtuzumab, trastuzumab, OKT3, rituximab

- **Concern for false positive responses:** infliximab and anti-streptavidin IgG2 induced pro-inflammatory cytokines in this assay, including TNFα, IL-6, IL-8, and IL-1β

Data representative of 3 separate experiments

Anti-SA = anti-streptavidin human IgG2
Solution Phase: high density PBMC pre-culture (Römer et al., 2012)

- Culture human PBMC at high density (10^7 cell/ml) for 48 hrs/37°C.
- After 48 hrs, wash and re-culture cells at 2 x10^5/well in a 96-well plate for 24 hrs.
- mAb tested:
 - TGN1412: 1µg/mL
 - alemtuzumab: 10µg/mL
 - rituximab: 10 & 100 µg/mL
 - trastuzumab: 10 & 100 µg/mL
 - OKT3: 1µg/mL
 - Anti-SA IgG2: 100 µg/ml
High density PBMC pre-culture CRA: cytokine release in response to soluble TGN1412 and OKT3

- Reproduced published results: soluble TGN1412 induced release of IFNγ, TNFα, IL-2, IL-4, IL-6, and IL-10

- No cytokine release with rituximab, trastuzumab, or anti-SA IgG2

Data from 5 human donors (denoted by color)

Anti-SA = anti-streptavidin human IgG2

Data representative of 4 separate experiments
Co-culture Platforms: human peripheral blood immune cells + endothelial cells

• Human umbilical cord vein endothelial cells (HUVEC) can provide necessary cross-linking for TGN1412 activation of human T cells
 • Original observation: Stebbings et al., 2007
 • Findlay et al 2011: HUVEC + human PBMC
 • Dhir et al. 2012: HUVEC + human peripheral blood leukocytes

• Human Immune Response Assay (HIRA):
 • In-house at Amgen
 • Culture of PBL (lymphocytes, monocytes, granulocytes) in 80% autologous platelet-poor plasma in the presence of HUVEC
 • 20-24 hr culture
 • TNF-α, IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10
HIRA: detection of pro-inflammatory cytokines in response to mAb therapeutics with strong CRS association in patients

- **OKT3 and CD28 agonist mAb:** induced T cell-associated cytokines including IL-2, IL-4, IL-10, as well as IFN-γ, TNF-α, IL-6, and IL-8
- **Alemtuzumab** induced cytokines associated with innate immune cells (NK cells, monocytes): IFN-γ, TNF-α, IL-6, and IL-8

Data from 6 human donors (denoted by color)
Anti-SA = anti-streptavidin human IgG2
HIRA: Cytokine release responses to mAb therapeutics are concentration-dependent

Data from 4-5 human donors (denoted by color)
Anti-SA = anti-streptavidin human IgG2
HIRA: no cytokine release in response to mAb therapeutics with weak or rare CRS association

No changes in IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ, or TNF-α in response to infliximab, trastuzumab, or rituximab over a 100 fold concentration range.

Anti-SA = anti-streptavidin human IgG2

Data from 6 human donors (denoted by color)
PBL-HUVEC Co-culture is predictive for clinically significant CRS

<table>
<thead>
<tr>
<th>Platform</th>
<th>Pro-inflammatory Cytokines Detection</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mAb with strong CRS association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mAb w/ weak or rare CRS association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mAb w/ no CRS association</td>
<td></td>
</tr>
<tr>
<td>Solid Phase</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>Concern for false positives</td>
</tr>
<tr>
<td>High Density PBMC Pre-culture</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specifically enhances detection of T cell activation; licensing fee</td>
</tr>
<tr>
<td>PBL-HUVEC Co-culture</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contains all circulating immune cells of interest</td>
</tr>
</tbody>
</table>
HIRA CRA is considered optimal for Amgen’s goal of identifying molecules with potential for clinically significant CRS risk

- Hazard identification approach for novel mAb and other Fc-bearing molecules
 - Final cytokine panel: IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IFN-γ, TNF-α
 - ≥ 3X increase above background (PBL + HUVEC) levels of any cytokine is considered a “positive” for cytokine release
 - Cut-off based on data from negative controls (infliximab, anti-streptavidin, isotype controls)
 - OKT3 (positive control) used to confirm assay functioned as expected
 - No attempt to rank molecules based on cytokine levels: no comparison to positive controls used in the assay.
 - For proposed antagonist mAb candidates: any cytokine release above cut-off is considered a red flag
 - For proposed agonist mAb candidates: cytokine release is confirmation of mechanism of action and concentration-response curve may inform clinical dosing levels
HIRA at Amgen

- Protein therapeutics which target immune cell receptors and contain an Fc moiety are tested in HIRA
 - mAb for soluble targets or targets not expressed on immune cells are not routinely tested
 - Test a range of concentrations that are considered relevant to anticipated clinical exposures and/or to demonstrated on-target activity based on in vitro or preclinical in vivo studies.
 - Typically test 5-6 human donors simultaneously: logistically difficult to test more at this time
Acknowledgements

• Discovery Toxicology, Amgen
 • Lisa Anest
 • Ching He
 • Padma Narayanan
 • Cindy Afshari

• Immunotox Expert Working Group, Amgen
 • Herve Lebrec
 • Rafael Ponce
 • Jeanine Bussiere
 • Michelle Horner
 • Jim Rottman
 • Dan Mytych
 • Jacqueline Kirchner

• These studies were funded by Amgen Inc.